Zum Hauptinhalt springen

Hautkrebs mit „Genspritze“ geschrumpft

Der erste klinische Ver­such zum direkten Gentransfer wurde erfolgreich abgeschlossen. Wie Gary Nabel und seine Mitarbeiter vom Medizinischen Zentrum der Universität Michigan in der jüngsten Ausgabe der Fachzeitschrift PNAS berichten, konnte das „therapeutische Potential“ und die Sicherheit der Methode an fünf Patienten bestätigt werden, die unter einem malignen Melanom des Stadiums IV litten.

Im Rahmen der klinischen Phase-I-Studie injizierten die Forscher eine Mischung aus Liposomen und nackter Erbsubstanz jeweils sechs Mal direkt in die Tumoren. Die Konzentration der eingesetzten DNA übertraf dabei diejenige in den vorausgegangenen Tierversuchen um den Faktor sechs. Es handelte sich dabei um Gensequenzen, welche für das Transplantationsantigen HLA-B7 codieren. HLA-B7, das bei den Probanden zuvor nicht nachweisbar war, wurde daraufhin von bis zu zehn Prozent der Tumorzellen in der Nähe der Einstichstelle synthetisiert.

Anschließend habe man starke Hin­weise auf eine verstärkte Reaktivität zytotoxischer T-Zellen gegen das frem­de Antigen gefunden, berichtete Nabel. Eine Immunantwort gegen die Fremd-DNA wurde dagegen nicht beobachtet. „Alle Patienten tolerierten die Behand­lung gut; akute Komplikationen gab es nicht.“

In einem Fall wurde nach kutaner Injektion eine vollständige Regression nicht nur des behandelten Knotens er­zielt, sondern auch entfernter Metasta­sen, darunter ein drei Zentimeter durchmessendes Geschwür der Lunge. Vorausgegangene chirurgische Maßnahmen waren bei diesem Patienten ebenso wirkungslos geblieben wie Strahlen- und Chemotherapie, die Gabe von Interferon sowie eine Immunthe­rapie mit BCG und Interleukin 2.

Auf einem Symposium des Verbundes Klinisch-Biomedizinische Forschung hatte Nabel kürzlich in Heidelberg eingeräumt, daß die direkte Injektion nackter DNA in den Tumor „wenig elegant“ erscheinen möge. „Aber wenn man Gene an einen bestimmten Ort im Körper des Patienten haben will, sollte man sie einfach dort platzieren. Liposomen bilden dabei eine wichtige und möglicherweise sicherere Alternative gegenüber den gebräuchlichen viralen Vektoren.“

(Original-Manuskript für einen Artikel in der Ärzte-Zeitung vom 2. Dezember 1993. Eine Publikumsversion wurde gesendet im Deutschlandfunk am 1. Dezember 1993.)

Quelle: Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, Huang L, Shu S, Gordon D, Chang AE. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11307-11. doi: 10.1073/pnas.90.23.11307.

Buchbesprechung: Die veränderte Zelle

Während in Deutschland die Behandlung „unheilbar“ krebskranker Menschen mit Hilfe der Immuntherapie noch in den Kinderschuhen steckt, verfügt der Amerikaner Steven Rosenberg über ausreichend Erfahrung, um ein ganzes Buch dem Thema zu widmen.

Nach gut zwanzig Jahren angewandter Spitzenforschung zog der vom US-Magazin Newsweek als „medizinischer Superstar“ bejubelte Rosenberg eine erste Bilanz: Seine Autobiographie „Die veränderte Zelle“ (in verschiedenen Ausgaben erhältlich bei Amazon), die der heute 53-jährige zusammen mit dem Journalisten John M. Barry verfaßt hat, liest sich über weite Strecken spannend wie ein Krimi.

Ein Rätsel, das ihm vor dreiundzwanzig Jahren der Patient James DeAngelo in der Notaufnahme eines Krankenhauses in West Roxburry aufgegeben hatte, sollte Rosenberg nicht mehr loslassen:

Zwölf Jahre nachdem der „hoffnungslose Fall“ von Magenkrebs mit einer Vielzahl von Tumoren und Metastasen zum Sterben nach Hause geschickt wurde, geriet DeAngelo im Sommer 1968 an den jungen Assistenzarzt Rosenberg. Der entfernte ihm in einem Routineeingriff die Gallenblase und stellte dabei mit ungläubigem Staunen fest, daß sämtliche Krebsgeschwüre spurlos verschwunden waren.

Niemand hatte den stoppelbärtigen Kriegsveteranen behandelt. Der Körper dieses Mannes hatte den Krebs besiegt. Unter den -zig Millionen Opfern der Krankheit waren damals weltweit ganze vier Fälle bekannt, in denen sich Magenkrebs von selbst zurückgebildet hatte.

„Wie?“ – so die Frage, die Rosenberg seither mit einer Energie verfolgt, die an Besessenheit grenzt. 

Versuche, bei denen Krebspatienten die Abwehrzellen von Schweinen injiziert wurden, muten aus heutiger Sicht bestenfalls naiv, schlimmstenfalls verantwortungslos an. Die oft in allen Details beschriebenen chirurgischen Eingriffe, die teilweise rabiaten Therapieversuche und die Erläuterung unzähliger Komplikationen und Nebenwirkungen könnten leicht den Eindruck eines Fanatikers erwecken, dem jedes Mittel recht ist.

Doch das Bild trügt. Dem hochbegabten Sohn einer jüdischen Einwandererfamilie geht es um die Rettung von Menschenleben. Teilnahmebedingung für die klinischen Versuche am Nationalen Krebsinstitut in Maryland ist, daß sämtliche anderen Möglichkeiten ausgeschöpft wurden.

Rosenberg beschreibt seine Patienten einfühlsam als Mütter und Familienväter, mal mutig, mal angstvoll, hin und wieder spricht er auch von Freundschaft.

Umso mehr verbittert es ihn, wenn er nach zehnjährigem Ringen bilanzieren muß: „Dreißig Tote ohne Wenn und Aber. Ich hatte jeden einzelnen dieser Patienten gekannt, und zwar gut.“ Das war 1984, ein Jahr, in dem die Gentechnik Rosenbergs Arbeiten einen großen Schub verlieh.

Für seine Versuche benötigte der Chefchirurg einem vielversprechenden Botenstoff, Interleukin II (IL-2), der die oft zahnlosen Abwehrzellen des Immunsystems in gefährliche Killer verwandeln kann. Allerdings hatte der Weltkonzern Du Pont dreißig Mitarbeiter gebraucht, um in einjähriger Arbeit gerade 35 tausendstel Gramm aus der Milz von Mäusen herzustellen – viel zu wenig für all die Fragen, die in unzähligen Experimenten geklärt werden mußten.

Die kalifornische Firma Cetus dagegen übertrug die menschliche Erbinformation zur Herstellung des Interleukins auf Bakterienzellen. Innerhalb weniger Tage konnte man jetzt die Leistung des Pharmariesen Du Pont um ein Vielfaches übertreffen. Die Aktienkurse schossen in die Höhe, doch der Durchbruch im Kampf gegen den Krebs war nirgendwo in Sicht:

„Ich behandelte weiterhin Patienten mit IL-2. Sie starben.“ Hätte Rosenberg damals – nach 75 Toten – aufgegeben, wer hätte es ihm verdenken können?

Kurz danach bringt die Kombination von IL-2 und Killerzellen, die vom Patienten entnommen und im Labor vermehrt wurden, endlich den ersehnten Erfolg. „Es war als hätte mir jemand in den Magen getreten“, erinnert sich Rosenberg an den Anblick des Röntgenbildes, das am 29.1.85 eindeutig den Rückgang der Tumoren bei einer sterbenskranken Marinesoldatin dokumentierte. Sie erfreut sich noch heute bester Gesundheit.

Die nackten Zahlen mögen ernüchtern: Über 1200 Patienten – die meisten mit Nieren- oder Hautkrebs in einem weit fortgeschrittenen Stadium – erhielten bisher die von Rosenberg entwickelte Immuntherapie. Bei Drei von Vieren blieb die Behandlung ohne Wirkung. Teilerfolge in Form längerer Überlebenszeiten waren jedoch bei 15 Prozent der Patienten zu verbuchen; bei jedem zehnten verschwanden die Tumoren sogar vollständig.

„Vielleicht werde ich das Rätsel nie lösen“, räumt der 53-jährige am Ende seiner Autobiographie ein. Trotzdem: „Ein paar große Stücke des Puzzlespiels liegen jetzt an der richtigen Stelle. Und ich suche weiter.“

(gelesen und geschrieben für die „WELT“, Erscheinungsdatum unbekannt.)

Gentherapie gegen Rheuma geplant

Nachdem ich die Redakteursstelle bei der WELT aufgegeben hatte, folgten meine ersten Jahre als Freier Journalist für Medizin & Wissenschaft. Häufig habe ich dann ein Thema mehreren Regionalzeitungen gleichzeitig angeboten, was vor dem Internet bei nicht überlappenden Verbreitungsgebieten der Print-Ausgaben problemlos möglich war. Manchmal wurde auch noch eine Fachversion erstellt, beispielsweise für das Deutsche Ärzteblatt oder die Ärzte-Zeitung, oder die Infos wurden als Teil eines größeren Artikels einem Magazin angeboten. Ein Beispiel ist dieser Text, den ich hier in 3 Versionen poste:

(Süddeutsche Zeitung, 26. August 1993, gekürzt in der Stuttgarter Zeitung am 28. August)

Eine neue Strategie gegen die schmerzhaften Gelenkkrankheiten Rheuma und Arthrose wollen Wissenschaftler in Düsseldorf und Pittsburgh gemeinsam erproben. Fast jeder zweite Bundesbürger über 65 leidet unter den Beschwerden, denen mit Medikamenten oftmals nicht beizukommen ist. Bei den gebräuchlichen Arzneien, die in Pillenform aufgenommen oder mit einer Spritze in die Blutbahn injiziert werden, kommt es außerdem häufig zu Nebenwirkungen, die dann ebenfalls mit Medikamenten gelindert werden müßen.

Durch einen Gentransfer in die Zellen der Gelenkinnenhäute gelang es den Molekularbiologen im Tierversuch an Kaninchen, das Problem an der Wurzel zu packen. Dabei wurden zunächst mit einer Arthroskopie Zellen aus dem erkrankten Gelenk entfernt. Anschließend schleußten die Forscher im Labor mit Hilfe von Fettkörperchen (Liposomen) das IRAP-Gen in die Zellen ein. Dadurch erhielten die kranken Zellen die Fähigkeit, ein Eiweiß herzustellen – das Interleukin-Rezeptor-Antagonist-Protein – welches das Hormon Interleukin 1 blockiert und dadurch der Rheumaentstehung entgegenwirkt.

Nachdem die genmanipuierten Zellen wieder in die Gelenke der Tiere zurücktransplantiert wurden, produzierten die Tiere das schützende Eiweiß bis zu sechs Wochen lang. Sowohl die für Rheuma typische Entzündung als auch die anschließende Zerstörung des Knorpels wurden dadurch verhindert. Hauptziel der Wissenschaftler ist es jetzt, die Wirksamkeit der transferierten Gene möglichst lange zu erhalten. Allzu häufige Eingriffe an den späteren Patienten mit den dazugehörigen Injektionen veränderter Zellen in die Gelenke wären nicht nur schmerzhaft und unpraktisch, sie könnten auch selbst zu neuen Entzündungen führen.

Die Drei-Mann-Firma Orthogen will als Träger des Projekts das Prinzip unter Leitung von Peter Wehling zur Anwendungsreife weiterentwickeln. Unterstützt wird Wehling dabei vom Minsterium für Wirtschaft, Mittelstand und Technologie des Landes Nordrhein-Westfalen, das insgesamt 1,25 Millionen Mark bereitstellt. Wehling, der etwa zwei Millionen Mark Kapital aufgebracht hat, hofft darauf, in „zwei bis drei Jahren“ die ersten menschlichen Patienten behandeln zu können. Das Konzept sieht vor, daß Gelenkhautinnenzellen dann jeweils von Spezialisten vor Ort entnommen und anschließend per Spezialtransport nach Düsseldorf gebracht werden, wo der Gentransfer stattfinden soll. Die genmanipulierten Zellen würden dann – so Wehlings Vision – zurückgeflogen und den Patienten während einer ambulanten Behandlung verabreicht.

(VDI-Nachrichten, 27. August 1993)

Rheuma und Arthrose könnten in zwei bis drei Jahren durch eine Gentherapie behandelt werden, so die Hoffnung von Peter Wehling, Leiter der Düsseldorfer Firma Orthogen. In Zusammenarbeit mit Wissenschaftlern der Universität Pittsburgh soll in der nordrhein-westfälischen Landeshauptstadt ein Verfahren entwickelt werden, bei dem bundesweit kranke Zellen aus den Gelenken der Patienten entnommen und anschließend in einem zentralen Labor korrigiert werden. Nach dem Rücktransport sollen die genmanipulierten Gelenkhautinnenzellen den Rheumakranken dann während einer ambulanten Behandlung wieder verabreicht werden.

Nach Angaben von Wehling leidet in Deutschland fast jeder zweite Rentner an den oft sehr schmerzhaften Gelenkkrankheiten Rheuma und Arthrose. Im Extremfall müßten täglich bis zu acht verschiedene Medikamente eingenommen werden.

Gegenüber den bisherigen Medikamenten hätte das gentechnische Verfahren den Vorteil, daß schützende Wirkstoffe direkt im Gelenkspalt produziert würden, statt den gesamten Organismus zu überschwemmen. Im Gegensatz zu herkömmlichen Arzneien, die in Pillenform oder als Spritze verabreicht werden, seien daher bei dem neuen Verfahren Nebenwirkungen nicht zu erwarten, erklärte der Begründer der Technologie, Professor Chris Evans von der Universität Pittsburgh.

Bisher wurde der Gentransfer in die betroffenen Zellen der Gelenkinnenhäute jedoch lediglich an Kaninchen erprobt. Dazu schlossen die Forscher ein Therapiegen in kugelförmige Fettkörperchen, (Liposomen) ein, die nach Kontakt mit der Zellmembran ihre Fracht in das Zellinnere entlassen. Die Zellen nutzten daraufhin bis zu sechs Wochen lang den molekularen Bauplan zur Herstellung eines Eiweißes, des Interleukin-Rezeptor-Antagonist-Proteins (IRAP). IRAP wiederum blockierte das Hormon Interleukin-1, welches bei der Rheumaentstehung eine entscheidende Rolle spielt.

Die Rechnung der Wissenschaftler ging auf; die für Rheuma und Arthrose typischen Entzündungen und Knorpelzerstörungen im Gelenk konnten bei den Tieren verhindert werden. Obwohl die Wirkungsdauer vor einer Anwendung des Verfahrens am Menschen noch wesentlich verlängert werden müßte, fördert das Ministerium für Wirtschaft, Mittelstand und Technologie des Landes Nordrhein-Westfalen das Projekt mit rund 1,25 Millionen Mark. Damit wolle man ein Standortsignal setzen für die Bio- und Gentechnologie und zur besseren Akzeptanz beitragen, erklärte Staatssekretär Hartmut Krebs: „Dies ist auch ein Stück PR zur Ermutigung von Wissenschaftlern in unserem Land.“

(unveröffentlichte Version für Deutsches Ärzteblatt vom 30. August 1993)

Eine Gentherapie gegen Rheuma und Arthrose soll in Zusammenarbeit zwischen der Universität Pittsburgh und der Düsseldorfer Firma Orthogen entwickelt werden. Das Vorhaben wird vom Ministerium für Wirtschaft, Mittelstand und Technologie des Landes Nordrhein-Westfalen mit 1,25 Millionen Mark gefördert. „Dies ist auch ein Stück PR zur Ermutigung von Wissenschaftlern in unserem Land“, sagte Staatsekretär Hartmut Krebs vor Journalisten in Düsseldorf.

Der Transfer von Genen mit antiarthritischen Eigenschaften in Gelenkhautinnenzellen wurde bisher allerdings lediglich bei Kaninchen erprobt. Dort gelang es der Arbeitsgruppe von Professor Chris Evans an der University of Pittsburgh School of Medicine durch Blockade des Rezeptors für Interleukin-1, Entzündungen und Zerstörung des Knorpels im Gelenk zu verhindern.

Ursprünglich hatte man versucht, Synovialzellen durch die Injektion von rekombinanten Retroviren direkt im Gelenk zu transduzieren. Dies scheiterte daran, daß Retroviren nur sich teilende Zellen infizieren können, die Gelenkhautinnenzellen aber lediglich eine sehr geringe mitotische Aktivität aufweisen. Dagegen war man beim Gentransfer in vitro erfolgreich: In Liposomen verpackte Kopien des IRAP-Gens wurden in Synovialzellen eingeschleust, die zuvor dem Gelenk entnommen worden waren. Nach Retransplantation produzierten die Zellen bis zu sechs Wochen lang das Interleukin-Rezeptor-Antagonist-Protein (IRAP).

Nebenwirkungen erwartet Evans von der neuen Methode nicht, da die eingeschleusten Gene im Gegensatz zu gebräuchlichen Medikamenten ihre Wirkung nur im Gelenkspalt entfalten würden. Da Evans beim Gentransfer auf den Einsatz von Retroviren verzichtet, schließt er eine Gefährdung der Patienten aus. „Bisher ist noch kein Empfänger fremder Gene als Folge solch einer Behandlung erkrankt.“

Innerhalb von „zwei bis drei Jahren“ soll das Verfahren jetzt zur klinischen Anwendung gebracht werden, sagte Orthogen-Geschäftsführer Peter Wehling. Wichtigstes Ziel der Wissenschaftler ist es dabei, die Dauer der Genexpression erheblich zu steigern. Der Orthopäde stellt sich dabei vor, daß lokal durch Arthoskopie gewonnene Synovialzellen nach Düsseldorf geflogen und dort im Speziallabor mit antiarthritischen Genen versehen werden. Anschließend – so Wehlings Vision – werden die Zellen in einer ambulanten Behandlung den Patienten vor Ort reimplantiert. Auch einen Preis kann der habilitierte Neuroimmunologe schon heute nennen: „Zwischen 10000 und 40000 Mark“ soll ein einzelner Gentransfer kosten.

Heftig kritisiert wurde Wehling unterdessen vom Präsidenten der Deutschen Gesellschaft für Rheumatologie, Professor Joachim R. Kalden:  „Das so darzustellen, ist gefährlich, unkritisch und falsch“, sagte Kalden gegenüber dem Ärtzeblatt.

Eine amerikanische Studie zur Inhibition von IL-1 habe bei weitem nicht den Erfolg gebracht, den man sich hätte vorstellen können, erklärte der Neuroimmunologe. Dagegen habe man mit der Hemmung von TNF- durch monoklonale Antikörper sowohl im Tierversuch als auch am Patienten sehr gute Erfolge erzielt.

„Ich meine, daß man in der Diskussion über die Hierarchie der Zytokine, die für die Perpetuation der Inflammation bei der chronischen Polyarthritis verantwortlich sind, noch ganz am Anfang steht. Es sieht so als, als ob IL-1 ein Kandidat sei, möglicherweise aber nicht der entscheidende. Jetzt schon Pressekonferenzen über eine Gentherapie bei der chronischen Polyarthritis zu entwickeln, halte ich für sehr gewagt.“

Quelle: Pressekonferenz und Telefonat, keine Fachpublikation.

Was wurde daraus? Nach dieser Ankündigung machte Prof. Wehling noch mehrfach Schlagzeilen, unter anderem im Jahr 2009 mit einem „Ersten Hinweis auf klinische Erfolge der Gentherapie„. Etabliert ist das Verfahren allerdings bis heute nicht. Bei der Firma Orthogen, die laut der Webseite Bionity.com inzwischen 25 Mitarbeiter hat, zielt man nun offenbar weniger hoch und bewirbt stattdessen mit Orthokin(R) „ein Medizinprodukt zur Herstellung Autologen Conditionierten Serums, das entzündungshemmende Zytokinantagonisten und Wachstumsfaktoren enthält“. Außerdem arbeitet man an einer „neuartigen Stammzelltechnologie zur Knorpelregeneration aus nicht-embryonalen Stammzellen“, die jedoch keine eigene Erfindung darstellt, sondern „exklusiv von Harvard lizensiert“ wurde. 

Gentherapie heilt Immunschwäche

Ein Rückblick ins Jahr 1993, als das Forschungsgebiet der Gentherapie im Aufbruch war. Als gelernter Molekularbiologe war ich von den Möglichkeiten fasziniert und bin heute ein bisschen enttäuscht, dass man nicht schneller vorangekommen ist. Enttäuscht bin ich aber auch von Roland Mertelsmann, den ich damals auf mehreren Dienstreisen kennen gelernt habe, und dessen Name auf 58 Forschungsarbeiten auftaucht, die laut einem Gutachten der Deutschen Forschungsgemeinschaft „gefälscht oder fälschungsverdächtig“ sind.

Zwei kleine, gesunde Mädchen sind der bislang überzeugendste Beweis dafür, daß die Gentherapie erfolgreich sein kann, wo die klassische Medizin an ihre Grenzen stößt. Vor knapp drei Jahren erhielt Ashanti Desilva am Nationalen Gesundheitsinstitut der USA eine Infusion mit etwa einer Milliarde gentechnisch veränderter weißer Blutzellen. Die sechsjährige Ashanti, die damals an einer lebensbedrohlichen und äußerst seltenen Immunschwächekrankheit litt, führt heute ebenso ein normales Leben wie die elf Jahre alte Cynthia Cutshall, die wenige Monate später behandelt wurde.

Im Rückblick wird das historische Experiment als „Meilenstein in der Geschichte der Medizin“ gefeiert, die beteiligten Ärzte gelten als sichere Kandidaten für den Nobelpreis. Was W. French Anderson, Michael Blaese, Kenneth Culver und andere in mittlerweile gut 25 Studien an knapp 100 Patienten vorexerzierten, soll nun auch in der Bundesrepublik stattfinden:

An der Freiburger Universitätsklinik setzt Roland Mertelsmann auf die Gentherapie, die im Herbst bei 14 krebskranken Freiwilligen erprobt werden soll. Alle herkömmlichen Methoden haben bei diesen Patienten versagt – ein Grund mehr für den Mediziner, die Erwartungen nicht zu hoch zu schrauben. „Mehrere hundert Krebskranke haben bereits nachgefragt“, berichtet Mertelsmann.

Noch stehen die Erwartungen in krassem Mißverhältnis zu den eher spärlichen Erfolgsmeldungen. Andererseits gibt es eine Vielzahl von Gründen für den Optimismus der Beteiligten. Während Arzneimittel in aller Regel nur die Symptome einer Krankheit behandeln können, läßt sich das Übel durch eine Gentherapie oft unmittelbar an der Wurzel packen. Statt Chemikalien im Körper des Patienten abzulagern, liefert die Gentherapie den betroffenen Zellen die fehlenden Informationen, erklärt Detlev Ganten, Direktor des Max-Delbrück-Centrums für Molekulare Medizin in Berlin.

Im Falle von Ashanti und Cynthia war diese Information ein Gen, welches die Bauanleitung für ein einziges Eiweiß enthält. Ohne diesen Biokatalysator – die Adenosin-Deaminase – sammelten sich im Körper der Mädchen Stoffwechselprodukte an, die zu einer schleichenden Vergiftung wichtiger Abwehrzellen führten. Eine nicht abreißende Serie von Infektionen war die Folge; ohne die ständige Einnahme starker Antibiotika hätten die Kinder die Zeit bis zu dem rettenden Eingriff vermutlich nicht überlebt.

Zwar steht seit kurzem das fehlende Eiweiß auch in Medikamentenform zur Verfügung. Die Arznei hat aber gravierende Nebenwirkungen und konnte in mindestens drei Fällen das Leben der kleinen Patienten nicht mehr retten. Weltweit gibt es kaum 30 Kinder, die unter dieser Krankheit – der ADA-Defizienz – leiden. Trotzdem hatten Anderson, Blaese und Culver gute Gründe, die Erfolgschancen einer Gentherapie zunächst an diesem extrem seltenen Leiden zu prüfen.

Schon geringe Mengen des fehlenden Eiweißes reichen nämlich aus, um den Defekt zu korrigieren. Das Ärzteteam spekulierte deshalb darauf, daß es genügen würde, die fehlende Erbinformation zumindest in einen kleinen Teil der betroffenen Immunzellen hineinzuschmuggeln. Bei einer Gentherapie gegen Krebs wären dagegen praktisch alle entarteten Zellen zu zerstören. Um einen Gesunden vor einer Infektion mit dem Aidsvirus zu schützen, müßten gar 100 Prozent der gefährdeten Immunzellen erreicht werden.

Ein weiterer Faktor erleichtert die Gentherapie bei der ADA-Defizienz: Die betroffenen Immunzellen lassen sich relativ leicht aus dem Blutstrom isolieren. Im Labor können die Wissenschaftler
dann in die Trickkiste der modernen Biologie greifen und unter mehreren Varianten des Gentransfers auswählen. Die beliebtesten Helfer sind derzeit Viren, die sich im Lauf der Evolution darauf spezialisiert haben, in die verschiedensten Körperzellen einzudringen und dort ihr genetisches Material abzuladen. Was den Viren unter normalen Umständen hilft, sich auf Kosten des Infizierten zu vermehren, machen die Genforscher sich zunutze.

Längst haben sie die Viren „kastriert“, indem sie aus dem Erbmaterial Gene entfernten, die für die Vermehrung der Parasiten unverzichtbar sind. An ihre Stelle setzten die US-Wissenschaftler im Falle der kleinen Ashanti den molekularen Bauplan zur Herstellung des fehlenden Eiweißes – das ADA-Gen. Im Reagenzglas entluden die umgebauten Viren ihr Mitbringsel in den Blutzellen, die im Labor kräftig vermehrt und schließlich dem Mädchen injiziert wurden. Der Eingriff war erfolgreich und wurde inzwischen auch in Europa zwei Mal durchgeführt.

Da die genmanipulierten Blutzellen nur eine begrenzte Lebensdauer haben, mußten Ashanti und Cynthia die unangenehme Prozedur bisher etwa alle sechs bis acht Wochen erdulden. Den zwei jüngsten Patienten bleibt dies vermutlich erspart: Ein Ärzteteam der Universität San Franzisko erprobte im letzten Monat den Gentransfer auf Stammzellen, die kurz nach der Geburt aus den Nabelschnüren der beiden neugeborenen Knaben gewonnen wurden. Dies hat den Vorteil, daß alle Abkömmlinge der erfolgreich behandelten Stammzellen das gesunde Gen in sich tragen; im Idealfall wäre also die Krankheit mit einer einzigen Behandlung geheilt.

Leider ist es bei Kindern und Erwachsenen äußerst schwierig, die seltenen Stammzellen aufzuspüren und aus dem Knochenmark herauszulocken. In neueren Experimenten hat Gentherapie-Pionier Michael Blaese jedoch auch dieses Problem in Angriff genommen. Im niederländischen Rijswijk wartet außerdem Dinko Valerio auf eine Gelegenheit, seine Version des Gentransfers in Stammzellen an einem der seltenen Patienten mit ADA-Defizienz zu erproben.

Während bei dieser Immunschwächekrankheit weltweit eine Übermacht von Ärzten und Molekularbiologen einer vergleichsweise winzigen Zahl von Patienten gegenübersteht, sieht die Situation bei der Zystischen Fibrose, auch Mukoviszidose genannt, ganz anders aus. „Allein in Deutschland gibt es rund 10000 Patienten, deren mittlere Lebenserwartung beträgt 24 Jahre“, erklärte der Britische Molekularbiologe Robert Williamson.

Die Zellen der Patienten produzieren ein fehlerhaftes Eiweiß, welches bei Gesunden den Export von Natrium- und Chloridionen übernimmt. Ist der Ionentransporter defekt, bildet sich in Lunge und Magen-Darm-Trakt ein zähflüssiger Schleim. Die Kranken sind extrem anfällig für Infektionen durch Pilze, Bakterien und Viren, außerdem ist die Nahrungsverwertung gestört. Schuld ist ein schadhaftes Gen, bei dem in den meisten Fällen nur ein einziger von rund 300000 Bausteinen fehlt.

Williamson, der am Londoner St. Mary’s Hospital arbeitet, wird als einer der Ersten versuchen, diesen Erbdefekt mit den Methoden der modernen Biologie zu korrigieren. Statt wie seine amerikanischen und französischen Kollegen auf Viren zu setzen, hat Williamson seine Therapiegene in winzige Fettkügelchen – sogenannte Liposomen – verpackt. Sie sollen mit einem Aerosol bis in die feinsten Verästelungen der menschlichen Lunge gelangen und mitsamt der heilbringenden Erbsubstanz von den geschädigten Zellen der Luftwege aufgenommen werden. Die gesunden Gene werden dann ausgepackt und sind, wie Tierversuche andeuten, bis zu hundert Tagen in der Lage, die Produktion des fehlenden Eiweißes zu steuern. Danach müßte die Prozedur wiederholt werden.

Wenn der Gentransfer nur bei jeder zwanzigsten Zelle funktioniert, wäre das Problem nach Ansicht von Williamson gelöst. Ob das Versprechen gehalten werden kann, wird sich bald zeigen: Mit
umgebauten Erkältungsviren hat Ronald Crystal vom Nationalen Gesundheitsinstitut der USA vor wenigen Wochen den ersten Patienten behandelt.

Eher zögerlich geht man inzwischen auch in Deutschland ans Werk. Während sich in den USA schon 1984 die erste Ethikkommission mit Möglichkeiten und Folgen der Gentherapie auseinandersetzte, hat Gesundheitsminister Horst Seehofer erst vor kurzem eine Arbeitsgruppe zum Thema einberufen. Sie soll „überprüfen, ob der gegenwärtige rechtliche Rahmen angesichts der sich abzeichnenden stürmischen Entwicklung“ ausreicht. Die in Forscherkreisen weitverbreitete Haltung, ein Gentransfer sei im Prinzip mit einer Organtransplantation vergleichbar und bereite daher keine neuartigen Probleme, findet bei Politikern und in der deutschen Öffentlichkeit bisher wenig Zustimmung.

Neben Roland Mertelsmann, der seine Genehmigung schon in Händen hält, planen derzeit noch vier weitere deutsche Arbeitsgruppen den Einstieg in die Gentherapie. Sie werden große Mühe haben, den Hoffnungen todkranker Patienten und den kühnen Prognosen optimistischer Wissenschaftler gerecht zu werden: „In 50 Jahren werden 50 Prozent aller Behandlungen das Prinzip Gentherapie nutzen“, lautet die Vision von Detlev Ganten, Direktor des Max-Delbrück-Centrums für Molekulare Medizin in Berlin.

(Originalfassung eines Artikels für die VDI-Nachrichten, erschienen am 30. Juli 1993)

Robert Gallo: Ideen gegen AIDS

Beim Duell der Rivalen gab es dieses Jahr auf der 9. Internationalen Aidskonferenz einen klaren Sieger: In Berlin gewann der Amerikaner Robert Gallo gegen den Franzosen Luc Montagnier deutlich nach Punkten. Gallo ist Abteilungsleiter am Nationalen Krebsinstitut der USA und wird von Kollegen und Konkurrenten gleichermaßen als brillant, erfolgreich und wenig zimperlich bei der Wahl seiner Mittel beschrieben. Er hatte den Delegierten einen bunten Strauß von Vorschlägen mitgebracht. Montagnier dagegen, der das Virus vor zehn Jahren am Pariser Pasteur-Institut als erster isolierte, konnte in diesem Jahr nur wenig Neues präsentieren.

„Viren gegen Viren“ lautet einer von Gallos Schlachtrufen, seit andere Wissenschaftler herausgefunden haben, daß ein scheinbar harmloses Herpesvirus die gleichen Bindungsstellen auf der Oberfläche bestimmter Immunzellen benutzt wie HIV, das tödliche Immunschwäche-Virus. Nur wenn das Aidsvirus an diese Bindungsstellen – die sogenannten CD4-Rezeptoren andocken kann, gelangt es auch ins Zellinnere, um dort sein zerstörerisches Werk zu beginnen. Gallo schlägt deshalb vor, Bruchstücke des gutartigen Herpesvirus in großen Mengen herzustellen. Im Körper von Gesunden und bereits infizierten Menschen könnten diese Bruchstücke dann möglicherweise alle Bindungsstellen besetzen und so das Eindringen und die Ausbreitung des Aidsvirus verhindern. Erste Versuche in diese Richtung sind bereits angelaufen, bisher allerdings ohne durchschlagenden Erfolg. Gallo hofft dennoch, damit „einen neuen Weg bei der Behandlung von Aids“ zu eröffnen.

Ein zweiter Vorschlag – ebenfalls von Gallo unterbreitet – ließ die anwesenden Wissenschaftler aufhorchen. „Es mag ein wenig seltsam klingen“, sagte er, „aber man könnte auch bestimmte Bestandteile befallener Immunzellen ins Visier nehmen, statt immer nur auf das Virus zu zielen.“ Der Vorstoß entbehrt nicht einer gewissen Logik, denn Viren sind als nahezu perfekte Parasiten darauf angewiesen, eine Vielzahl von Eiweißen zu nutzen, die von der Wirtszelle produziert werden. Wenn es gelänge, einen dieser Biokatalysatoren in infizierten Zellen lahmzulegen, ohne gleichzeitig die gesunden Nachbarn allzu sehr in Mitleidenschaft zu ziehen, wäre auch das ein vielsprechender Ansatz, glaubt Gallo.

Natürlich hat er auch schon einen Kandidaten ausgespäht: Ribonukleotid-Reduktase heißt das Eiweiß. In allen Zellen produziert es die Bausteine (Nukleotide), aus denen anschließend die Erbsubstanz DNA zusammengesetzt wird. Mit einer schon lange bekannten Laborchemikalie – Hydroxyharnstoff – läßt sich dieser Prozeß zwar nicht vollständig, aber doch so weit unterbinden, daß in der Zelle nur noch geringe Mengen an DNA-Bausteinen zur Verfügung stehen. Weil das Aidsvirus auf einen großen Vorrat von Nukleotiden angewiesen ist, um sich im Körper wirkungsvoll zu verbreiten, hofft Gallo, es mit Hydroxyharnstoff in Schach halten zu können. HIV würde dann zwar immer noch in infizierten Zellen schlummern, in diesem Stadium ist die Gesundheit des Virusträgers jedoch nicht merklich beeinträchtigt.

Zukunftsmusik zumindest bei der Behandlung oder Verhinderung einer HIV-Infektion ist gegenwärtig noch die Gentherapie. Mit Hilfe von im Labor „kastrierten“ Verwandten des Aidsvirus sollen dabei schützende Erbanlagen auf die gefährdeten Immunzellen übertragen werden. Selbst Gallo gibt zu, nicht sicher zu sein, ob diese Idee nicht auch in Zukunft bloßes Wunschdenken bleiben wird. Zwar gelang es im Tierversuch tatsächlich, bestimmte Viren als „Gentaxis“ zu benutzen, ihre heilbringende Fracht konnten sie jedoch bisher nur bei einem kleinen Bruchteil der Zellen abladen, die es zu schützen gilt.

Voraussetzung für eine erfolgreiche Gentherapie wäre es aber, 100 Prozent derjenigen Immunzellen zu erreichen, die normalerweise von dem Aidsvirus angesteuert werden. Regelrecht in Mode gekommen ist in letzter Zeit die sogenannte Antisense-Technik. Mit ihr wollen die Forscher bestimmte Gene des Aidsvirus gezielt abschalten. Antisense-Moleküle, die mittlerweile in vielen Labors kiloweise produziert werden, sollen sich an besonders wichtige Abschnitte des viralen Erbguts ankoppeln und so die Vermehrung verhindern. In Zellkulturen funktioniert die Technik bereits. Einer Handvoll Arbeitsgruppen ist es auf diese Weise sogar gelungen, die Vermehrung von Aidsviren über Monate hinweg völlig zu unterbinden.

Die leidvollen Erfahrungen der Vergangenheit zeigen allerdings, daß es vom Reagenzglas bis zum Krankenbett ein weiter Weg ist. Es steht zu befürchten, daß die meisten Menschen, die heute bereits mit dem Virus infiziert sind, diese Wartezeit nicht überleben werden.

(erschienen in der Stuttgarter Zeitung am 19. Juni 1993)

Gentherapie gegen AIDS?

Ausgerechnet mit Hilfe von Aids-Viren, die im Labor ihrer todbringenden Eigenschaften beraubt wurden, wollen amerikanische Wissenschaftler einen neuen Versuch starten, der noch immer unheilbaren Immunschwächekrankheit beizukommen. Die brisante Idee, die selbst unter Experten Stirnrunzeln hervorruft, entpuppt sich erst bei näherer Betrachtung als wohldurchdachte Strategie, das Aidsvirus mit den eigenen Waffen zu schlagen.

Um nämlich diejenigen Abwehrzellen zu schützen, von deren Überleben das Schicksal aller Infizierten abhängt, müssen die Forscher erst einmal an die richtigen Blutzellen herankommen. Warum also nicht das Aidsvirus selbst benutzen, um schützende Gene in die gefährdeten Makrophagen und T-4-Helferzellen zu transportieren?

Wenn man zuvor die gefährlichen Erbanlagen des Erregers mit molekularbiologischen Methoden herausschneiden und durch nützliche Gene ersetzen würde, erhielte man ein ideales Vehikel für die Gentherapie. Dieser Ansicht ist zumindest Joseph Sodroski vom Dana-Farber Cancer Institute, der kürzlich auf einem Symposium des renommierten Cold Spring Harbor Labors bei New York versuchte, die Idee seinen Kollegen schmackhaft zu machen.

„Ich glaube nicht, daß die Öffentlichkeit bereit ist, einer Gentherapie mit modifizierten Aidsviren zuzustimmen“, konterte dagegen der Brite Robert Williamson, seines Zeichens ebenfalls Gentherapeut in spe. Viren – ob HIV oder Andere – haben trotzdem eine gute Chance, ihren schlechten Ruf als Krankheitserreger wieder wettzumachen. Schon lange werden harmlose Varianten von Pocken- oder Polioviren bei Schutzimpfungen eingesetzt. Für die Gentherapie interessant sind dagegen die mehr oder weniger harmlosen, im Labor quasi kastrierten, Retro- und Adenoviren. „Sie funktionieren wie kleine Lastwagen, die sich selbst beladen, ihre Fracht an den Zielort bringen und dort auch noch auspacken“, begeistert sich Williamson.

Ähnlich argumentiert auch Karin Mölling vom Berliner Max-Planck-Institut für molekulare Genetik: „Wie lernt man fliegen? Man macht es den Vögeln nach!“ In ähnlicher Weise haben Biologen und Mediziner durch genaue Beobachtung von Viren einiges darüber gelernt, wie man ein bestimmtes Gen in ausgewählte Zellen hineinschmuggeln kann. Auch bei der Frage, welche Gene für eine Blockade des Immunschwächevirus in Frage kommen, tappt man nicht länger im Dunkeln.

Im Mittelpunkt des Interesses stehen derzeit die sogenannten frühen regulatorischen Gene des Erregers, TAT und REV. TAT, das Transaktivator Gen, gilt als Hauptschalter, dessen Stellung darüber entscheidet, ob die komplette virale Erbinformation kopiert wird oder nicht. Mit defekten TAT-Genen ist es Clay Smith vom Memorial Sloan-Kettering Cancer Center in New York bereits gelungen, die Bildung neuer Viren in Zellkulturen drastisch zu reduzieren.

Der Erfolg war allerdings nicht von langer Dauer; wie so oft bildeten sich innerhalb kurzer Zeit neue Virusvarianten, die sich auch in Gegenwart defekter TAT-Gene ungestört vermehren können. Andere Arbeitsgruppen werden nun zeigen müssen, ob man mit REV mehr Glück hat. Das REV-Gen dient als molekulare Blaupause zur Herstellung eines Eiweißes – Rev – das vermutlich für den Transport des viralen Erbfadens aus dem Zellkern in das umgebende Zytoplasma zuständig ist. Die dort gelegenen Eiweißfabriken der befallenen Zelle befolgen dann artig die Befehle zur Produktion neuer Virusbestandteile – der Erreger kann sich weiter ausbreiten.

Dem will Ernst Böhnlein am Sandoz Research Institute in Wien einen Riegel vorschieben. Auch Böhnlein bedient sich dazu eines Retrovirus für den Gentransfer in menschliche Zellen. Wie erhofft blockiert ein Überschuß defekter Rev-Moleküle die Vermehrung des Aidsvirus – jedenfalls im Labor.

Mit einer Blockade der Virusvermehrung geben sich manche Arbeitsgruppen jedoch nicht zufrieden. Sie wollen mehr erreichen als „nur“ den Stillstand der Infektion. Ziel ist es, die befallenen Zellen mitsamt den darin versteckten Aidsviren abzutöten. Dabei kommen sogenannte „Selbstmord-Gene“ zum Einsatz: Wie Tretminen sollen sie in den gefährdeten Abwehrzellen auf die Invasoren warten, um beim ersten Kontakt eine tödliche Kettenreaktion auszulösen.

Dazu haben Richard Morgan und seine Mitarbeiter am Nationalen Gesundheitsinstitut der Vereinigten Staaten die Erbinformation zur Herstellung des Diphterie-Giftes mit dem Abschnitt eines Virusgens verbunden. Sobald das Virusteil mit den Eiweißen Rev oder Tat in Berührung kommt, produziert die Zelle das Diphterie-Toxin, von dem ein einziges Molekül zur Selbstzerstörung ausreicht. Das gleiche Prinzip mit einem anderen Gift wird derzeit auch bei der Therapie bestimmter Hirntumoren erprobt. „Wunderbar, was mit solchen Suizid-Genen alles gemacht werden kann“, freut sich Karin Mölling.

Ein immer wieder vorgebrachter Einwand gegen die Gentherapie mit Retroviren lautet, die Gentaxis könnten beim „Einparken“ gesunde Gene beschädigen und dadurch langfristig die Entstehung von Tumoren begünstigen. Für einen todkranken Patienten jedoch sei dieses theoretische Risiko kein Argument, widerspricht Frau Mölling, die ihre eigenen Arbeiten auf diesem Gebiet demnächst in der Schweiz fortsetzen wird.

Vielleicht wird man den „natürlichen“ Gentransfer durch gezähmte Viren schon in wenigen Jahren ersetzten können. Mit „Genkanonen“ könnte dann die hochgereinigte Erbsubstanz direkt in den Patienten geschossen werden – eine Methode, welche die gebürtige Texanerin Priscilla Furth bereits an lebenden Mäusen und Schafen erprobt hat. Eine Stahlfeder katapultierte dabei die Gene mit solcher Geschwindigkeit aus dem Lauf, daß sie mehrere Zentimeter tief in die Haut eindrangen, angeblich ohne bleibende Schäden zu hinterlassen.

Bei einem Internationalen Symposium zur Gentherapie, das kürzlich im Berliner Max-Delbrück-Centrum stattfand, zeigten sich die anwesenden Experten trotzdem eher skeptisch. Die Mehrheit, so schien es, würde die „sanften“ Retroviren einem Schuß mit der Genkanone vorziehen.

Literatur:

PNAS Vol. 89, pp 9870-9874; Bevec, D, Dobrovnik, M., Hauber, J., Böhnlein, E.: Inhibition of human immunodeficiency virus type 1 replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Rec trans-activator.

Aids Research and Human Retroviruses Vol. 8, pp 39-45; Harrison, G.S., Long, C.J., Maxwell, F., Glode, L.M., Maxwell, I.H.: Inhibition of HIV Production in Cells Containing an Integrated, HIV-Regulated Diphteria Toxin A Chain Gene.

(Originalversion von „Selbstmord als Programm“, Bild der Wissenschaft, Juni 1993)

 

Gentherapie gegen Mukoviszidose geplant

Ethische Bedenken? Robert Williamson kann die Gedankengänge des Fragestellers nicht nachvollziehen, fühlt sich scheinbar persönlich angegriffen. „Ich sehe absolut kein ethisches Problem darin, die Behandlungsmöglichkeiten für eine große Anzahl von Menschen zu verbessern, die an einer sehr schweren Erbkrankheit leiden.“ Der hemdsärmelige Molekularbiologe von der Londoner St. Mary’s Hospital Medical School wird spätestens Ende des Jahres eine Gentherapie gegen die Mukoviszidose- auch Cystische Fibrose oder kurz CF genannt – erproben.

Wieviel Not sich hinter den medizinischen Fachausdrücken verbirgt, machte Williamson kürzlich auf einem Gentherapie-Symposium am Max-Delbrück-Centrum in Berlin-Buch deutlich: „Allein in Deutschland gibt es rund 10.000 Patienten; deren mittlere Lebenserwartung beträgt 24 Jahre.“ Ursache ist eine krankhaft veränderte Schleimproduktion in Lunge, Bauchspeicheldrüse, Leber und anderen Organen. Die zähe Flüssigkeit führt dazu, daß die Betroffenen häufig um Luft ringen müssen. Außerdem behindert sie lebenswichtige Verdauungsenzyme auf ihrem Weg in den Magen, weshalb die Nahrung nicht ausreichend verwertet wird.

Durch eine besonders nährstoffreiche Diät sowie eine ausgeklügelte Bewegungs- und Atemtherapie konnten in den letzten Jahrzehnten beeindruckende Erfolge erzielt werden. Zudem mildern neue Antibiotika die vielfältigen Infektionen der Atemwege, unter denen die Patienten zeitlebens zu leiden haben. Als letzter Ausweg kommt für einige wenige eine Herz-Lungen-Transplantation in Betracht. Die Fortschritte sind zwar recht beachtlich – noch in den fünfziger Jahren starben fast alle CF-Patienten im Kindesalter -, können aber nicht darüber hinwegtäuschen, daß doch immer nur die Symptome behandelt werden. Nun wollen gleich fünf Arbeitsgruppen weltweit neben Williamsons Gruppe noch ein französisches und drei amerikanische Teams das Übel an der Wurzel packen.

Seit 1989 kennt man das Gen, das, wenn es lädiert ist, zu einer Mukoviszidose führt. Es enthält die Informationen zur Herstellung eines Eiweißes, das im Normalfall Natrium- und Chloridionen aus den Zellen heraustransportiert. Bei siebzig Prozent aller Betroffenen fehlt lediglich einer von 300.000 Bausteinen des CF-Gens. Der fehlerhafte Bauplan führt zur Bildung eines defekten Eiweißes. Natrium- und Cloridionen bleiben deshalb in den Zellen, die ihrer Umgebung zum Ausgleich Wasser entziehen – aus einer dünnflüssigen Schutzschicht entsteht der gefürchtete zähe Schleim.

Obwohl inzwischen dreihundert verschiedene Mutationen des CF-Gens bekannt sind, von denen zwölf gravierende Folgen haben, konnte Williamson seinen Zuhörern in Berlin-Buch auch eine gute Nachricht überbringen: „Ich denke, Sie könnten 15 kaputte CF-Gene in jeder Zelle ihres Körpers haben. So lange auch nur ein normales CF-Gen vorhanden ist, bleiben Sie gesund.“ Diese Eigenschaft verbessert die Erfolgsaussichten einer Gentherapie erheblich.

Das Ziel der Wissenschaftler ist daher nicht besonders hoch gesteckt: „Wenn nur jede zwanzigste Zelle in einer Schleimschicht normal funktioniert, würde das für einen normalen Ionentransport schon genügen.“ Dies ist eine Einsicht, die man aus Versuchen in Zellkulturen sowie an Ratten und Mäusen gewonnen hat. Mit Hilfe von „umgebauten“ Erkältungsviren ist es Ronald Crystal vom Nationalen Gesundheitsinstitut der USA in Maryland als erstem gelungen, das menschliche CF-Gen in die Lungenzellen seiner Versuchstiere einzuschmuggeln.

Crystal benutzte dazu eine Art Nasenspray, mit dem die Viren samt der heilsamen Fracht eingeatmet wurden. In den Atemwegen der Ratten konnte der Mediziner daraufhin das menschliche Eiweiß nachweisen. Auch wenn statt der Viren winzige Fettkügelchen (Liposomen) als Vehikel für den Gentransfer benutzt und per Aerosolspray in den Organismus übertragen werden, überleben die manipulierten Zellen bis zu hundert Tage. Die Erfolge im Labor genügen nach Ansicht von Williamson, um die Therapie bald an CF-Patienten zu erproben. Gegenwärtig müssen sie sich mehrmals täglich vom lebensbedrohlichen Schleim freiklopfen.

Die zuständigen klinischen Prüf- und Ethikkommissionen haben bereits die Weichen gestellt: Alle fünf Arbeitsgruppen erhielten grünes Licht, um jeweils eine kleine Zahl freiwilliger Patienten zu behandeln. Schon innerhalb der nächsten Monate sei mit dem ersten Eingriff zu rechnen, meint Williamson, der seine Erlaubnis vor zwei Wochen bekam. Er freut sich auf den unmittelbar bevorstehenden Schritt aus der Theorie in die Praxis. „Hoffentlich wird dann in wenigen Jahren eine neue Behandlung zur Verfügung stehen.“

(erschienen in der Süddeutschen Zeitung am 15. April 1993)

Fehlendes Eiweiß wird ersetzt

Ein Durchbruch auf dem Gebiet der Gentherapie wird aus den Niederlanden vermeldet. Dort gelang es – zunächst im Tierversuch an Rhesusaffen – fremdes Erbmaterial mit Hilfe eines Mäusevirus in blutbildende Stammzellen zu übertragen. Jetzt soll diese Methoden einer geringen Zahl von Patienten zugutekommen, die von einer seltenen Immunschwäche – der ADA-Defizienz – betroffen sind.

Bei dieser Krankheit ist eines der geschätzten 100.000 Gene defekt, aus denen sich das menschliche Erbmaterial zusammensetzt. In fast jeder Körperzelle findet sich – zusammengeknäult auf mikroskopisch kleinem Raum – ein etwa 120 Zentimeter langer Faden aus rund drei Milliarden Bausteinen, das menschliche „Genom“.

Fehler im Genom sind dafür verantwortlich, daß etwa fünf Prozent aller Neugeborenen an einer mehr oder weniger ernsthaften Erbkrankheit leiden. Häufig genügt der Austausch eines einzigen Bausteines um die Betroffenen zeitlebens zu belasten. Sobald die Erbinformation geschädigt ist, wächst die Wahrscheinlichkeit, daß sich in die Produktion der Eiweiße Fehler einschleichen.

Bei Patienten mit ADA-Defizienz ist das entsprechende Eiweiß manchmal defekt, manchmal wird es auch überhaupt nicht hergestellt. Die Adenosin-Deaminase (ADA) aber ist für den Abbau giftiger Stoffe in der Zelle zuständig. Fehlt sie, so sammeln sich die Giftstoffe im Blut an. Innerhalb kurzer Zeit sterben einige der wichtigsten Zellarten im Immunsystem an dieser Vergiftung. Betroffen sind vor allem T-Zellen und B-Zellen: Die körpereigene Immunabwehr bricht zusammen. Damit sind die kleinen Patienten den Angriffen von Bakterien und Viren schutzlos ausgeliefert.

In den letzten Jahren sind bereits mehrere Anläufe unternommen worden, um die heimtückische Krankheit in den Griff zu bekommen. Beispielsweise ist es möglich, gesunde Blutzellen auf dem Wege einer Knochenmarktransplantation zu übertragen. In aller Regel scheidet diese Möglichkeit aber aus, weil es zu einem Angriff der Spenderzellen auf die Organe des Empfängers kommt (Graft-versus-host-disease) Die Erfolgsrate bei Knochenmarktransplantationen liegt bei etwa 50 Prozent. Selbst wenn ein idealer Spender gefunden wird – was nur für jeden Dritten Patienten gelingt – liegt die Erfolgsaussicht „nur“ bei 90 Prozent.

Das fehlende Eiweiß könnte im Prinzip auch direkt dem Patienten verabreicht werden, ein Verfahren, mit dem ebenfalls schon experimentiert wurde. Dabei fand man allerdings heraus, daß ADA, das direkt in die Blutbahn gespritzt wird, innerhalb von wenigen Minuten zerfällt.

Diese Schwierigkeit versuchte man dadurch zu umgehen, daß man das Eiweiß mit einer Schutzhülle aus der Substanz PEG umgab; die Lebenszeit von ADA wurde damit im Blut auf mehrere Tage verlängert. Aber auch hier gibt es schwerwiegende Probleme: Nach ein bis zwei Jahren entwickeln die Patienten Antikörper gegen das fremde ADA, dieses wird dann wie ein Krankheitserreger angegriffen, so daß die Gentherapie unter den geschilderten Methoden noch am ehesten als zukunftsträchtig erscheinen mag.

(erschienen in „DIE WELT“ am 28. August 1991)

Was wurde daraus? Abgesehen davon,dass die Zahl der menschlichen Gene heute eher auf 22.000 geschätzt wird, und nicht mehr auf 100.000: Elf weitere Jahre sollte es dauern, bis zur ersten Heilung der ADA durch eine Gentherapie, damals noch in Kombination mit einer Chemotherapie. Bald darauf wurde jedoch bei den behandelten Kindern Blutkrebs festgestellt. Weitere Arbeiten folgten, bis es zuletzt einer italienischen Arbeitsgruppe gelang, die Gentherapie so zu modifizieren, dass kein Krebs mehr ausbrach. Gemäß dem letzten Update aus dem Jahr 2017 war man hier bei allen 18 Patienten erfolgreich. Die Prozedur lag da schon 2 bis 13 Jahre hinter ihnen, und alle haben die Krankheit überlebt.

Wenn Gene aus der Kanone fliegen

Während eine gespannte Öffentlichkeit die ersten zaghaften Versuche zur Gentherapie beim Menschen verfolgt, planen Biologen und Mediziner schon den nächsten Schritt in die Zukunft. Doch wie soll die Raffinesse eines Verfahrens übertroffen werden, in dem gentechnisch veränderte Viren winzige Bruchstücke der menschlichen Erbinformation in hochspezialisierte Immunzellen einschmuggeln, die dann – so die Hoffnung aller Beteiligten – zu Milliarden ausschwärmen, um die Arbeit des Chirurgen überflüssig zu machen?

Nicht komplizierter, sondern einfacher müssen die Techniken werden, damit möglichst viele kranke Menschen von den Ergebnissen der modernen Biologie profitieren können, so lautet die verblüffende Antwort der Experimentatoren. Erste Resultate weisen darauf hin, daß die Retroviren, welche in der Vergangenheit zum Gegenstand hitziger Diskussionen wurden, bald abgelöst und durch simplere Methoden des Gentransfers ersetzt werden könnten, Bisher hatte man die Viren als „Schlüssel“ zur Zeile angesehen, weil sie sich darauf spezialisiert hatten, ihr eigenes Erbmaterial zwischen die Gene der Wirtszelle einzuschmuggeln.

Steven Rosenberg und seine Mitarbeiter am National Institute of Health im amerikanischen Maryland hatten sich diese Eigenschaft zunutze gemacht, die Viren ihrer Vermehrungsfähigkeit beraubt und sie dann zu „Genfähren“ umgebaut. Vielversprechende Erbanlagen, wie jüngst die Bauanleitung für den Tumor Nekrose Faktor, konnten so mit Hilfe der gezähmten Viren Zellen des menschlichen Immunsystems hinzugefügt werden. Theoretisch kann jedes Gen, jeder molekulare Bauplan. den die Forscher bisher isolieren konnten, auf diese Weise verfrachtet werden und defekte oder fehlende Erbanlagen ersetzen.

Da die Anzahl bekannter Gene schon seit Jahren explosionsartig zunimmt, verfügen die Wissenschaftler schon heute über ein ganzes Arsenal an molekularen Blaupausen, beispielsweise für Hormone und Wachstumsfaktoren, strukturgebende Eiweiße oder Botenstoffe des Immunsystems. Dazu gehören auch solche Gene, deren Abwesenheit oder Defekt für eine Reihe verheerender Erbkrankheiten verantwortlich sind.

Die Gentherapie zielt nun darauf ab, die jeweils betroffenen Zellen zu reparieren, doch ergeben sich hier mehrere Engpässe, die bisher noch nicht überwunden werden konnten: Zum einen widersetzen sich die weitaus meisten der über 200 Zelltypen in unserem Körper dem Gentransfer mittels Retroviren. Die beiden bisher angelaufenen Versuche zur Gentherapie am Menschen beschränkten sich auf die Manipulation von weißen Blutzellen; diese aber sind mit einer Lebensdauer von wenigen Monaten relativ kurzlebig, so daß die Behandlung vermutlich mehrmals – oder gar lebenslang – wiederholt werden muß.

Ein weiteres Argument gegen die Viren lautete: Durch den rein zufälligen Einbau fremder Gene irgendwo auf dem über einen Meter langen menschlichen Erbgut könnten lebenswichtige Erbanlagen auseinandergerissen oder Onkogene aktiviert werden, die dann Krebserkrankungen auszulösen vermögen.

Obwohl eine weitere neue Technik, das „Gene-Targeting“, den Einbau der Ersatzgene zu einem hochpräzisen Vorgang machen könnte, bliebe ein drittes Problem weiter ungelöst: Die Prozedur läßt sich aller Voraussicht nach nicht rückgängig machen. Sollten unerwünschte Nebenwirkungen auftreten, kann der behandelnde Arzt ein einmal transferiertes Gen nicht einfach „absetzen“, wie dies etwa bei einem Arzneimittel möglich wäre.

Trotz aller Einwände und Bedenken könnte die Gentherapie bei einer Reihe von gravierenden Krankheiten zum Einsatz kommen; zunächst vor allem in solchen Fällen, bei denen alle anderen Methoden versagen. In jüngster Zeit konnte zudem gezeigt werden, daß ein Gentransfer auch ohne Viren stattfinden kann. So gelang es beispielsweise John Wolff vom Waisman Center der Universität Wisconsin in Zusammenarbeit mit Philip Felgner von der kalifornischen Firma Vical, intakte Gene durch direktes Einspritzen in die Muskelzellen von Mäusen zu übertragen („Science“, Band 247, S.1465).

Wolff und Felgner beobachteten, daß die eingebrachten Gene in den Versuchstieren die Produktion dreier Eiweißstoffe (CAT, Luziferase und ß-Galaktosidase) dirigierten – und das bis zu sechs Monaten. Darüber hinaus konnten die Wissenschaftler auch recht genau steuern, wieviel Eiweiß produziert wurde, indem sie die Menge an injizierter DNA entsprechend veränderten. Damit eröffnet sich die Möglichkeit, auch solche Krankheiten zu behandeln, bei denen sich die Gentherapeuten bislang in einer Sackgasse wähnten.

Ein Einbau von Genen in das Erbgut der Zielzellen ist, das bestätigten auch andere Arbeitsgruppen, nicht mehr in allen Fällen nötig. Dies verwunderte die Experten vor allem deshalb, weil fremde, „nackte“ Erbsubstanz (DNA) nach bisheriger Erkenntnis von den infizierten Zellen binnen kurzer Zeit in ihre Bausteine zerlegt werden sollte. Trotzdem meldete fast ein Dutzend voneinander unabhängiger Laboratorien, daß die Fremd-DNA teilweise über Monate hinweg intakt blieb und das biochemische Geschehen der Wirtszelle dirigierte („Nature“, Band 349, S. 351).

Nicht nur die Nadel dient indes dazu, die molekularen Baupläne in Form von DNA an Ort und Stelle zu verfrachten. Vielmehr haben die Forscher ein ganzes Arsenal von Methoden entwickelt, um beispielsweise auch diejenigen Zellen zu erreichen welche die Atemwege auskleiden oder die Wände unserer Blutgefäße bilden. Bestandteile der Zellmembran etwa – sogenannte Phosphoglyceride – können mit Wasser nach einer Ultraschallbestrahlung tropfenförmige Strukturen bilden, die in der Lage sind, Erbsubstanz zu transportieren Mit diesen mikroskopisch kleinen Kügelchen (Liposomen) gelang es beispielsweise bei Schweinen, Erbmaterial in die Wände von arteriellen Blutgefäßen zu verfrachten.

Die jetzige Todesursache Nummer eins in den westlichen Industrieländern könnte einmal ein mögliches Anwendungsgebiet dieser Versuche werden: Herz- und Kreislaufkrankheiten wie Arteriosklerose oder überhöhter Blutdruck ließen sich im Prinzip durch gentechnisch veränderte Zellen beeinflussen, die darauf programmiert würden, für einen bestimmten Zeitraum blutdrucksenkende Mittel direkt in den Blutstrom abzusondern. Die derzeit wohl spektakulärste Errungenschaft auf diesem Gebiet aber stellt die „Genkanone“ dar, eine Apparatur, mit der sich DNA-Moleküle wie Kugeln verschießen lassen („Nature“, Band 346, S.776). Dabei nutzt man die Eigenschaft nackter Erbsubstanz aus, sich an mikroskopisch kleine Partikel aus Gold oder Tungsten anzuheften. Die Teilchen können dann durch allerlei explosionsartige Verbrennungsprozesse (auch Schwarzpulver kommt vereinzelt zum Einsatz) abgefeuert werden. Vorläufig allerdings ist diese Anwendung erst bis zum Reagenzglas fortgeschritten, so daß die Spekulation darüber, ob jemals Patienten mit einer Genkanone beschossen werden könnten, den Autoren von Science-Fiction-Romanen vorbehalten bleibt.

Quellen:

  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–1468. doi:10.1126/science.1690918.
  • Felgner, P., Rhodes, G. Gene therapeutics. Nature 349, 351–352 (1991). doi: 10.1038/349351a0.
  • Johnston, S. Biolistic transformation: microbes to mice. Nature 346, 776–777 (1990). doi: 10.1038/346776a0.

(erschienen in „DIE WELT“ am 9. Februar 1991)

Erstmals Gentherapie gegen Hautkrebs erprobt

Zum ersten Mal haben Wissenschaftler die Methode der Gentherapie angewandt, um eine Krebserkrankung beim Menschen zu bekämpfen. Am Nationalen Gesundheitsinstitut im US-Bundesstaat Maryland wurden einer 29 Jahre alten Frau und einem 49jährigen Mann gentechnisch veränderte Blutzellen injiziert.

Man erhofft sich von dieser Behandlung Fortschritte zunächst bei der Bekämpfung des malignen Melanoms, einer bösartigen Form von Hautkrebs, die kaum zu behandeln ist und weltweit jährlich Tausende von Opfern fordert. Diese Form des Hautkrebses ist im Gegensatz zu den meisten anderen Arten nur selten heilbar.

Aufgabe der gentechnisch manipulierten Immunzellen ist es, den Bauplan für einen Eiweißstoff in die Nähe von wuchernden Krebszellen zu bringen. Dieser Eiweißstoff – es handelt sich um den Tumor Nekrose Faktor TNF – soll dann vor Ort seine Wirkung entfalten und auch sehr kleine Tochtergeschwüre (Metastasen) vernichten, die für das Skalpell des Chirurgen nicht zu erreichen sind.

Unter Leitung von Dr. Steven Rosenberg hatten die Arzte den beiden Patienten zunächst weiße Blutzellen entnommen, die sich in einem bösartigen Melanom angesammelt hatten. Diese Zellen des Immunsystems, deren Aufgabe unter anderem darin besteht, krebsartig entartete Zellen aufzuspüren und zu vernichten, sind beim malignen Melanom offensichtlich nicht in der Lage, Krebszellen wirkungsvoll zu bekämpfen. Kompliziert wird die Erkrankung vor allem dadurch, daß sich sehr schnell Tochtergeschwüre bilden, die die Funktion lebenswichtiger Organe behindern.

Um den entnommenen Zellen die Erbanlagen für TNF hinzuzufügen, benutzten Rosenberg und seine Kollegen French Anderson und Michael Blaese ein Virus als „Genfähre“. Das „Moloney-Mäuse-Leukämie-Virus“, welches nach Überzeugung der Forscher für den Patienten völlig ungefährlich ist, wurde zuvor künstlich geschwächt, um die Sicherheit noch weiter zu erhöhen.

Erfolg dieser Maßnahme: Die Viren können zwar das gewünschte Gen in die weißen Blutzellen des Patienten einschmuggeln; sie können sich im menschlichen Körper aber nicht mehr vermehren. Die veränderten Immunzellen vermehrten die Forscher dann massenhaft in Zellkulturen – ein Verfahren, das mehrere Wochen in Anspruch nimmt. In einem zweiten Schritt wurden die Zellen zu Milliarden in den Blutkreislauf der Patienten zurückgegeben. „Wir hoffen, die Tür zu einer neuen Art der Krebsbekämpfung zu öffnen, aber das Verfahren ist noch in einem sehr frühen Entwicklungsstadium“, dämpfte Rosenberg allzu hohe Erwartungen.

In dieser Studie wird vor allem die Sicherheit des Experimentes überprüft. Falls sich keine unvorhergesehenen Komplikationen ergeben, wird der Versuch auf zunächst 50 Patienten erweitert werden. Damit erreicht eine bislang 16jährige Forschungstätigkeit Rosenbergs ihren vorläufigen Höhepunkt, die darauf abzielt, die menschlichen Erbinformationen gezielt zur Krebsbekämpfung einzusetzen.

Vorausgegangen waren dem historischen Experiment ausgiebige Untersuchungen über den Verbleib von gentechnisch veränderten Zellen im menschlichen Körper. Dazu war den weißen Blutzellen bereits vor einem Jahr ein sogenanntes Marker-Gen eingepflanzt worden, mit dem sich die manipulierten Zellen von den unveränderten des Patienten unterscheiden ließen.

Der erste Versuch überhaupt, eine menschliche Krankheit mit Hilfe der Gentherapie zu heilen, wurde im September des vergangenen Jahres begonnen. Ein vier Jahre altes Mädchen, das unter einer äußerst seltenen Immunschwächekrankheit litt, zeigt nach vorläufigen Verlautbarungen bereits eine deutliche Besserung seines Gesundheitszustandes.

Das Eiweiß TNF, das jetzt in der Gentherapie erstmalig angewendet wurde, hatte schon vor Jahren in Zellkulturen und im Tierversuch seine Fähigkeit bewiesen, Tumoren zu bekämpfen und war eine der ersten Substanzen auf der langen Liste gentechnisch hergestellter Wirkstoffe. Auch in Deutschland darf diese Substanz seit kurzem mit Hilfe von genmanipulierten Bakterien produziert werden.

(erschienen in „DIE WELT“ am 31. Januar 1991)  

Was wurde daraus? Fast 30 Jahre nach Erscheinen dieses Artikels finde ich bei einer Literatursuche auf PubMed annähernd 20.000 Publikationen zum Thema. Mehr als 2000 dieser Artikel erwähnen klinische Studien, jedoch ist die „Impfung gegen Hautkrebs“ immer noch nicht in der Praxis angekommen. Mindestens zwei derartige Studien laufen derzeit auch in Deutschland, wie ich einem Bericht der Melanoma Research Alliance entnehme. Nach zahlreichen Enttäuschung auf diesem Gebiet halte ich mich mit der Berichterstattung zurück bis die Daten zu einer größeren Zahl von Patienten in einer renommierten Fachzeitschrift erscheinen.