Zum Hauptinhalt springen

Google-Technik soll Brustkrebs erkennen

Die Mammographie ist ein Verfahren, bei dem Röntgenbilder der weiblichen Brust angefertigt werden. Ziel ist es, eine Krebserkrankung möglichst früh zu erkennen, genauer zu erfassen, oder auszuschließen. Die schwierige Aufgabe erfordert ein langes Fachstudium, und selbst Radiologen mit großer Erfahrung liegen mit ihren Beurteilungen nicht selten daneben. Die Folge sind falsche Alarme („falsch Positive“), die zur Verunsicherung der Frauen führen und zu Nachuntersuchungen, die sich erst im Rückblick als unnötig herausstellen. Dazu kommen noch Tumoren, die übersehen werden („falsch Negative“), und die weniger gut behandelt werden können, wenn sie schließlich doch auffällig werden.

Genauere Diagnosen erhofft man sich von der Technik der künstlichen Intelligenz (KI), die von Firmen wie Google und Microsoft erforscht und zunehmend eingesetzt wird. Ein Schwerpunkt liegt dabei auf der selbstlernenden Computerprogrammen, die Anhand von Bildern und anderen Mustern Vorhersagen treffen sollen.

Eine Studie, die jetzt in der Fachzeitschrift „Nature“ veröffentlicht – und von Google finanziert – wurde zeigt, wohin die Reise gehen könnte: Ein Forscherteam trainierte die Software mit Mammographie-Bildern von 26.000 Frauen aus Großbritannien und 3000 aus den USA. Ob die Diagnosen richtig waren, konnte man überprüfen, weil die Frauen etwa 3 Jahre später erneut untersucht wurden.

Beim Vergleich der Vorhersage-Genauigkeit hatte die Software sowohl weniger falsche Alarme verursacht, als auch weniger Tumoren übersehen. Auch als die Forscher das KI-System lediglich mit den britischen Daten trainierten, und anschließend anhand der US-Daten testeten, war „Dr. Google“ überlegen. Gegenüber den US-Ärzten hatte die Software 3,5 Prozentpunkte weniger falsch Positive und 8,1 Prozentpunkte weniger falsch Negative. Dies zeigt, dass die Software länderübergreifend zum Einsatz kommen könnte und nicht nur in jenen Regionen, wo sie ursprünglich getestet wurde. Theoretisch könnten daher weltweit Engpässe in der Versorgung gelindert und vielerorts die Qualität verbessert werden.

Kritisch anzumerken ist allerdings, dass die Studie die Praxisbedingungen in vielen Ländern mit guter Versorgung ignoriert hat. So war die „statistisch signifikante“ Überlegenheit der Google-Software in Großbritannien nicht besonders ausgeprägt und bezog sich nur auf die jeweils ersten Radiologen, die dort die Mammogramme begutachtet haben. Üblich ist im britischen System – wie auch im deutschen – allerdings die Prüfung durch (mindestens) 2 Radiologen, von denen der zweite den Befund des ersten kennt. Legt man diesen Maßstab an, so war KI-System weniger gut als jeweils 2 Fachärzte. Der Unterschied war allerdings gering, und es ist abzusehen, dass lernfähige KI-Systeme wie das hier getestete schon bald zur Ausstattung einer modernen Praxis gehören werden. Wenn schon nicht als „Dr. Google“ dann vielleicht als „Assistent Google“.

Quelle:

McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94. doi:10.1038/s41586-019-1799-6.

(Publikumsversion eines nur für Ärzte zugänglichen Fachartikels für Univadis.de, erschienen am 5. Januar 2020)

Maschine konserviert Schweinehirn

Ganz schön gruselig wirkt auf den ersten Blick eine Reihe von Experimenten, über die der Neuroforscher Professor Nenad Sestan von der Yale School of Medicine und seine Kollegen in der Fachzeitschrift Nature berichten: Von Dutzenden abgetrennten Schweineköpfen ist da die Rede, die noch vor Ort in der Schlachterei präpariert und später im Labor an eine hochkomplizierte Maschine („BrainEx“) angeschlossen wurden. Zweck der Übung war es, die Gehirne der Tiere möglichst lange funktionsfähig zu halten – und dies ist den Forschern auf spektakuläre Weise gelungen.

Jeweils etwa vier Stunden vergingen vom Zeitpunkt der Schlachtung bis ein Team von Neurochirurgen die Gehirne über die Karotisarterien an BrainEx angeschlossen hatte. Diese Maschine, bestehend aus mehreren Pumpen und Sensoren, einem Filtersystem für Blutschadstoffe, einem Pulsgenerator und einer Temperatursteuerung, übernahm dann für bis zu sechs Stunden die Aufgabe des nicht mehr existenten Schweinekörpers. An dessen Stelle durchspülte die Maschine das Schweinehirn mit einer speziellen Nährflüssigkeit, die ebenfalls für diese Versuche entwickelt worden war.

Wohl niemals zuvor ist es gelungen, ein derart großes Gehirn über so lange Zeit so gut zu konservieren: Beispielsweise konnten die Forscher zeigen, dass der Sauerstofftransporter Hämoglobin alle Blutgefäße in den abgetrennten Hirnen erreichte. Die Gefäßwände waren außerdem noch in der Lage, sich zusammenzuziehen. Als man nämlich das Medikament Nimodipin ins System spritzte, erhöhte sich der Blutfluss, so wie es auch bei einem gesunden und intakten Gehirn geschieht. Unter dem Mikroskop waren die typischen Strukturen der Nervenzellen und ihre Bestandteile klar zu erkennen, und im Gegensatz zu nicht präparierten Hirnen gab es keine größeren krankhaften Veränderungen. Sogar die Funktionen einzelner Nervenzellen waren intakt, und der Austausch elektrischer Signale funktionierte noch über viele Stunden hinweg. Höhere Hirnaktivitäten, die als Hinweis auf ein Bewusstsein in den isolierten Hirnen dienen könnten, gab es keine. Allerdings ist auch nicht klar, ob die Forscher überhaupt nach solchen Zeichen gesucht haben.

Kaum verwunderlich ist, dass kritische Geister gleich in zwei begleitenden Artikeln nach dem Sinn und der Moral dieser Experimente fragten. Klar ist aber auch, dass es den Wissenschaftlern nicht darum ging, abgetrennte Köpfe „unsterblich“ zu machen oder gar Tote ins Leben zurück zu holen. Vielmehr erlaubt ihre Methode zunächst einmal Untersuchungen, die mit herkömmlichen Arten der Präparation nicht möglich sind. Neben einem neuen Blick auf das Gehirn könnte die „Hirnmaschine“ zudem langfristig  dabei helfen, neue Therapien gegen die Schäden zu entwickeln, im Gehirn nach längerem Sauerstoffmangel entstehen – etwa nach einem Herzinfarkt oder bei Ertrunkenen.

Verselja Z et al.: Restauration of brain circulation and cellular functions hours post-mortem. Nature. 18. April 2019 (online). doi: 10.1038/s41586-019-1099-1.

Spinale Muskelatrophie: Hoffnung durch Antisense-Technik

Mithilfe einer neuartigen genetischen Technik ist es Wissenschaftlern erstmals gelungen, das Fortschreiten der Spinalen Muskelatrophie (SMA) bei Säuglingen und Kleinkindern zu verlangsamen – einer fatalen und bislang kaum aufzuhaltenden neurodegenerativen Erkrankung. „Dies ist eine vielversprechende Behandlungsmethode für die häufigste genetische Todesursache im Kindesalter“, so Prof. Christine Klein, Leiterin des Instituts für Neurogenetik an der Universität Lübeck und Vizepräsidentin der Deutschen Gesellschaft für Neurologie (DGN). Darüber hinaus könne man davon ausgehen, dass die hier genutzte Methode der Antisense-Technik auch für andere Erkrankungen und Indikationen angepasst werden und dort ebenfalls erfolgreich sein könnte.

Den Beweis, dass die Antisense-Technik funktionieren kann, haben nordamerikanische Neurologen mit einer Studie erbracht, über die sie in der Fachzeitschrift The Lancet berichten. Insgesamt 20 Säuglinge, die zwischen der dritten Lebenswoche und dem sechsten Lebensmonat an der Spinalen Muskelatrophie erkrankt waren, haben Richard S. Finkel vom Nemours Children´s Hospital und seine Kollegen behandelt.

Ursache der Erkrankung war in allen Fällen ein fehlendes bzw. defektes Gen für einen Nerven-Schutzfaktor (Survival Motor Neuron 1, SMN1). Ohne dieses Eiweiß gehen die Motoneuronen des Rückenmarks und des Hirnstammes zugrunde, die die Bewegungen einschließlich des Schluckens und des Atmens kontrollieren. Die Folgen sind fatal: Nicht einmal ein Viertel der Kinder überlebte bislang ohne künstliche Beatmung die Diagnose um mehr als zwei Jahre.

Vor diesem Hintergrund erhielten alle Teilnehmer den Wirkstoff Nusinersen in Form mehrerer Injektionen ins Nervenwasser des Rückenmarks. Zwar verstarben vier der 20 Babys trotz der Behandlung. Zum Zeitpunkt des Berichtes aber waren 16 noch am Leben. 13 von ihnen konnten ohne fremde Hilfe atmen, und bei 14 hatte sich die Muskelfunktion gebessert. Teilweise konnten diese Kleinkinder nun den Kopf aufrecht halten, greifen, stehen und sogar laufen. Solche Veränderungen hatte man bislang bei unbehandelten Kindern mit dieser Form von SMA nicht beobachtet. „Eine Heilung bedeutet das nicht“, sagt Prof. Klein, „aber die Therapie scheint wirksam zu sein.“

Die Neurologin hebt hervor, dass der molekulare Mechanismus der Methode wie geplant funktioniert hat: Nusinersen ist ein synthetisch hergestelltes Molekül, das spezifisch konstruiert wurde um ein Ersatzgen für SMN1 zu aktivieren, das fast baugleiche SMN2. Es könnte theoretisch ebenfalls den Nerven-Schutzfaktor liefern, der die Motoneuronen am Leben hält. Allerdings enthält SMN2 einen „Webfehler“, der die Übersetzung der Erbinformation in das rettende Eiweiß um 75 bis 90 Prozent verringert.

Diesen Webfehler konnte Nusinersen offenbar beheben. Das von Wissenschaftlern der Firma Ionis hergestellte synthetische Molekül heftet sich an einer genau vorausberechneten Stelle an ein Zwischenprodukt (Boten-RNS), welches die in SMN2 enthaltenen Erbinformationen an die Eiweißfabriken der Zellen übermittelt. Nusinersen verhindert dadurch, dass aus der SMN2-Boten-RNS ein Abschnitt entfernt wird und die Erbinformation unbrauchbar wird. Die Menge korrekt übersetzter Boten-RNS stieg um das 2,6-fache auf einen Anteil von 50 bis 69 %. Durch Messungen der Eiweißkonzentration im Rückenmark konnten die Forscher schließlich noch zeigen, dass die in dieser Studie behandelten Kinder um durchschnittlich 63,7 % Prozent mehr SMN-Protein bildeten, als unbehandelte Kinder.

Die Nebenwirkungen des Verfahrens wurden von den Patienten gut toleriert, sodass die genetische Therapie von Prof. Klein als „in akzeptabler Weise sicher“ eingestuft wird. Eine weitere, noch nicht veröffentlichte Studie mit Nusinersen bei älteren Patienten mit SMA war ebenfalls erfolgreich, teilte die Hersteller-Firma Ionis mit. Und unmittelbar vor Weihnachten gab die US-Zulassungsbehörde FDA bekannt, dass Nusinersen unter dem Handelsnamen Spinraza für die Behandlung der SMA sowohl bei Säuglingen als auch bei Erwachsenen zugelassen wurde (Inzwischen liegt auch eine Zulassung der europäischen Arzenimittelbehörde EMA vor).

„Als das weckt begründete Hoffnung auf die so lange erwartete Wende in der translationalen Anwendung von Erkenntnissen aus der Molekulargenetik von der reinen Diagnostik hin zu klinisch-therapeutischen Anwendungen im Sinne einer personalisierten Medizin“, so Prof. Klein. Die Antisense-Technik könne auch auf andere Erkrankungen angepasst werden, erwartet die DGN-Vizepräsidentin.

Während bei SMA die Übersetzung eines „schwachen“ Gens gefördert wird, ließe sich stattdessen auch das Ablesen schädlicher Gene verhindern. Im Tierversuch ist dies beispielsweise bei Mäusen schon gelungen, die als Modell für die Huntington´sche Krankheit dienten. Aber auch in klinischen Studien wurde und wird die Antisense-Technik bereits erprobt, beispielsweise gegen die Amyotrophe Lateralsklerose (ALS), Rheuma, Asthma, Morbus Crohn sowie eine Vielzahl von Krebserkrankungen.

(Vorlage für eine Pressemitteilung der Deutschen Gesellschaft für Neurologie vom 5. Januar 2017)

Quellen:

Gute Laune aus dem Handy

Man mag den Kopf schütteln über den aktuellen Hype um das Handy-Spiel Pokémon Go, aber lassen Sie es uns positiv sehen: Beim Fangen der virtuellen Viecher kommen die Spieler wenigstens in Freie und lernen ihre Umgebung kennen. Das scheint mir allemal besser als Extreme-Couching, Koma-Saufen und andere angesagte Freizeitaktivitäten.

Nun haben Psychologen der Universität Basel zusammen mit Kollegen aus Korea, den USA und Deutschland eine weitere nützliche Anwendung für Smartphones entdeckt: In einer Studie mit 27 gesunden jungen Männern übertrugen sie Übungen aus der Psychotherapie auf die Geräte, und verbesserten damit deutlich die Stimmung der Teilnehmer über die zweiwöchige Übungsphase hinweg.

In einer Pressemitteilung berichten die Forscher um PD Dr. Marion Tegethoff:

Die Probanden hatten die Wahl zwischen verschiedenen bewährten und neueren psychotherapeutischen Übungsbausteinen, sogenannten Mikro-Interventionen. So riefen sich manche der Teilnehmer während der Übungsphase emotionale Erlebnisse in Erinnerung, während andere Probanden kurze Sätze oder Zahlenfolgen kontemplativ wiederholten oder mit ihrer Gesichtsmimik spielten. Ihre Stimmungslage erfassten die Probanden auf ihrem Smartphone, indem sie jeweils vor und nach der Übung kurze Fragen durch Ankreuzen auf einer sechsstufigen Skala beantworteten. Wem es gelang, seine Stimmung durch die kurzen Übungseinheiten unmittelbar zu verbessern, profitierte auch längerfristig: Die Stimmung stieg insgesamt über die zweiwöchige Studienphase an.

Aus ihrer Mini-Studie ziehen die Forscher die Bilanz, dass smartphone-gestützte Mikro-Interventionen psychotherapeutische Angebote unter Umständen sinnvoll ergänzen könnten. „Die Befunde belegen die Nutzbarkeit smartphonebasierter Mikro-Interventionen zur Verbesserung der Stimmung in konkreten Alltagssituationen“, so Tegethoff. Um die Befunde zu erhärten, seien aber weitere Untersuchungen notwendig.

In ihrer Arbeit sieht die Psychologin auch einen Beitrag zur personalisierten Medizin, weil damit jederzeit und an jedem Ort ein Hilfsangebot verfügbar werde. Wer mag, kann sich auf der Webseite der Fachzeitschrift „Frontiers in Psychology“ selbst einen Eindruck von den Übungen verschaffen. Dort können fünf (englischsprachige) Videos betrachtet und somit auch für eigene Entspannungsübungen genutzt werden ( -> Video 1,  Video 2, Video 3, Video 4, Video 5).

Die Videos stehen allen Interessierten frei zur Verfügung, sodass sie auch für zukünftige Studien genutzt werden können, betonen die Forscher. Gleichzeitig warnen sie aber davor, dass diese Videos bei Menschen mit Depressionen oder einer anderen psychischen Erkrankung keine Behandlung durch eine Fachperson ersetzen können!

Quelle: Gunther Meinlschmidt, Jong-Hwan Lee, Esther Stalujanis, Angelo Belardi, Minkyung Oh, Eun Kyung Jung, Hyun-Chul Kim, Janine Alfano, Seung-Schik Yoo und Marion Tegethoff: Smartphone-based psychotherapeutic micro-interventions to improve mood in a real-world setting. Frontiers in Psychology (2016)

Forschung für die Ärmsten der Armen

Im Forschungsinstitut Icrisat nahe dem indischen Hyderabad kämpfen Forscher gegen den Hunger in der Welt. Wichtigste Waffe sind dabei uns unbekannte Pflanzen wie Sorghum und Perlhirse. Sie ermöglichen – im Gegensatz zu den Hochleistungsgewächsen der grünen Revolution – auch in einer unerbittlichen Umwelt noch akzeptable Ernten für eine weiter wachsende Weltbevölkerung. 750 Millionen Menschen, die in den semiariden Tropen täglich mit primitivsten Mitteln ums Überleben kämpfen müssen, profitieren von der Arbeit des Instituts, das vorwiegend aus den Steuergeldern der wichtigsten Industrieländer finanziert wird.

Vier Pflanzenarten bilden heute die Nahrungsgrundlage für den größten Teil der Menschheit: Mais und Reis, Kartoffeln und Weizen heißen die Gewächse, die in gemäßigten Klimazonen Rekordernten bringen – dank regelmäßiger Niederschläge, dem Einsatz von Düngemitteln und Pestiziden, dank künstlicher Bewässerung und einer weitgehend technisierten Landwirtschaft.

Dort aber, wo die Natur weniger freigebig ist, wo die Böden ebenso arm sind an Nährstoffen wie die Bauern an Geld, dort wo der Regen – wenn überhaupt – nur sporadisch fällt, sind die Menschen auf Pflanzen angewiesen, die auf europäischen Märkten nur selten zu finden sind. Die Rede ist von Sorghum und Perlhirse, von Hühner- und Taubenerbsen (Cicer arietinum und Cajanus cayan) sowie der immerhin als Snack verbreiteten Erdnuß.

Ohne diese fünf Pflanzen jedoch wären 750 Millionen Menschen in den semiariden Tropen ihrer Nahrungsgrundlage beraubt. Die semiariden Tropen (SAT) umfassen rund 20 Millionen Quadratkilometer in 50 Ländern beiderseits des Äquators, von Angola und Australien bis Zaire und Zimbabwe.

Zwar liegen die meisten SAT-Länder auf dem afrikanischen Kontinent, in einem über 1000 Kilometer breiten Gürtel um den zentralafrikanischen Regenwald, doch werden auch weite Teile Mexikos, Boliviens, Thailands und Pakistans zu dieser Landschaft gerechnet, in der erratische Regenfälle und nährstoffarme Böden den Bauern das Leben schwermachen. Diesen Bauern zu helfen ist das Hauptanliegen von Icrisat (International Crops Research Institute for the Semi-Arid Tropics), einem gewaltigen Forschungsinstitut im indischen Patancheru. „Wir arbeiten für die Ärmsten der Armen“, erklärt der leitende Direktor Dr. James Ryan. „Unser Ziel ist es, als Weltzentrum zur Verbesserung der Erträge und Qualität von Sorghum, Hirse, Hühnererbsen, Taubenerbsen und Erdnüssen zu dienen.“

Doch damit nicht genug: Icrisat soll außerdem als Genbank für diese Pflanzen fungieren, ebenso wie als Ausbildungsstätte und Koordinationszentrum für den Technologietransfer. Icrisat, das in diesem Jahr mit über 60 Millionen Mark finanziert wird, bietet hierfür ideale Voraussetzungen, denn auch Indien gehört zum größten Teil zu den semiariden Tropen.

Die rund 100 Top-Wissenschaftler der Forschungsstation werden in ihrer Arbeit von etwa 1500 Angestellten unterstützt – ein Verhältnis, das europäischen und amerikanischen Wissenschaftlern traumhaft erscheinen muß. Pflanzenzüchter und Insektenforscher, Landwirte und Botaniker, Genetiker und Mikrobiologen, Biochemiker und Virologen arbeiten hier in fachübergreifenden, problemorientierten Teams zusammen. Ziel ist es, die günstigen Eigenschaften verschiedener Rassen zu kombinieren und auch unter erschwerten Bedingungen, bei minimalem Einsatz von Düngemitteln und Pestiziden, noch akzeptable Ernten zu erreichen.

Ein unverzichtbares Hilfsmittel ist dabei die Icrisat-Genbank mit ihren über 100.000 lsolaten, die in weltweiten Sammelaktionen aufgespürt oder von Forschem in den Ländern der SAT direkt nach Hyderabad geschickt wurden.

Die Genbank beherbergt in ihren Tiefkühlschränken und wohlklimatisierten Lagerräumen jeweils mehrere tausend Nachkommen einer Pflanze, die in Samenform aufbewahrt werden. In mehrjährigen Abständen wird überprüft, ob die Samen noch keimungsfähig sind. Sobald der Anteil der „toten“ Samen die 15-Prozent-Marke übersteigt, muß das jeweilige Isolat aufgezogen und bis zur Samenreife hochgepäppelt werden. Diese „Enkel“ der ursprünglich gesammelten Pflanzen wandern dann wieder in peinlich genau gekennzeichnete Plastikbüchsen oder werden in Aluminiumfolien eingeschweißt – der Kreislauf beginnt von neuem.

Der gewaltige Arbeitsaufwand macht sich bezahlt, denn versteckt im Erbgut all dieser Pflanzen finden sich die Gene, die zahllosen Ernteschädlingen – von Pilzen und Würmern über Fliegen, Käfer und Raupen bis hin zu den verschiedensten Arten von Viren – den Appetit verderben. Auch andere Eigenschaften, wie Hitze- und Kälteresistenz sowie die Fähigkeit, auch längere Dürreperioden zu überstehen, schlummern in den Kühlschränken der Genbank.

Sogar die Zeit, welche die Pflanzen zum Wachstum von der Aussaat bis zur Ernte benötigen, unterliegt weitgehend dem Regime der Gene. Hühnererbsen, die in Südasien einen wichtigen Eiweißlieferanten darstellen, benötigen zwischen 75 und 150 Tage, wobei die längste Wachstumszeit häufig die größten Erträge bringt. Für die Taubenerbse, die zusätzlich noch als Windschutz, Brennstoff, Düngemittel und Viehfutter Verwendung findet, liegt die Wachstumszeit zwischen 110 und 180 Tagen.

Da beide Pflanzen erst nach der Regenperiode gesät werden, steht, besonders in trockenen Gebieten, oft nur wenig Zeit für das Wachstum der Frucht zur Verfügung. Aufgabe der Icrisat-Forscher ist es dann, für jeden Standort die „optimale“ Pflanze zu finden und der Natur gegebenenfalls durch Züchtung auf die Sprünge zu helfen.

„Jede Pflanze, die wir in die Genbank aufnehmen, wird genauestens auf ihre Eigenschaften überprüft“, erläutert Dr. Prasado Rao. Aus diesem Eignungstest gewinnen die Forscher der Genbank 30 bis 40 Meßwerte, die Aufschluß geben sollen über den optimalen Einsatz der Gewächse auf den Feldern der Welt. Auch für Versuche, bei denen günstige Eigenschaften verschiedener Wildstämme in weitverbreitete Rassen eingekreuzt werden, sind die Daten der Genbank unverzichtbar.

„Wir haben eine Politik der offenen Tür. Auf Anfrage kann jeder auf die hier registrierten Pflanzen zugreifen. Wir schicken ihm dann den Samen mit den gewünschten Eigenschaften zu“, betont Ryan die Richtlinien seines Instituts, das vorwiegend aus dem Steueraufkommen der industrialisierten Länder finanziert wird. Die Gesamtzahl der Proben, die von Hyderabad aus in die ganze Welt verschickt wurden, dürfte noch in diesem Jahr die Millionengrenze überschreiten.

Den finanziellen Nutzen dieser Aktionen kann Ryan nicht pauschal beziffern, doch zwei besonders erfolgreiche Icrisat-,“Produktionen“, die Perlhirsen ICMH 451 und WC-C75, brachten alleine den indischen Bauern einen Ertragszuwachs, dessen Wert den Jahresetat des Instituts übersteigt. Dennoch wäre es unrealistisch, auf eine zweite grüne Revolution zu hoffen, um die katastrophalen Folgen einer anhaltenden globalen Bevölkerungsexplosion zu mildern.

Zwar konnten in den sechziger Jahren mit hochgezüchteten Varietäten auf den Reisfeldern Asiens gewaltige Ertragssteigerungen erzielt werden; dies wurde jedoch erkauft durch eine starke Abhängigkeit von (teuren) Düngemitteln und (gefährlichen) Insektiziden. Nur wenn beides in reichem Maße vorhanden war, konnten die Rekordernten, die auf landschaftlichen Versuchsstationen erzielt wurden, auch in der Praxis erreicht werden. Dann kam die große Ernüchterung:

„Der unmäßige Gebrauch von Insektiziden im asiatischen Raum hat zu einer großen Anzahl von Schädlingsplagen geführt“, so Ryan. „Wir wissen, daß wir uns im Umgang mit der Natur nicht gerade mit Ruhm bekleckert haben.“ Diese Einsichten haben zum Umdenken geführt. Integrierter Pflanzenbau heißt die neue Philosophie, bei der biologische und chemische Methoden der Schädlingsbekämpfung sorgfältig aufeinander abgestimmt werden.

Im Zusammenspiel von schädlingsresistenten Pflanzen, Fruchtwechsel und variablen Saat- und Erntezeiten will man die Zahl der Mitesser unter einer wirtschaftlich akzeptablen Schwelle halten. Das offensichtlich unrealistische Vorhaben, die Schädlinge komplett auszurotten, gehört somit der Vergangenheit an. Ryan glaubt auch, den Grund für diesen Sinneswandel zu kennen: „Eine zunehmend kritische Öffentlichkeit hat in der agrochemischen Industrie zu einer gewissen Nervosität geführt. Man sorgt sich um Profite und das Image. In zehn Jahren werden die Vorräte an Insektiziden erschöpft sein, die im Westen längst verboten sind, aber immer noch ihren Weg in die Entwicklungsländer finden.“

Der integrierte Pflanzenbau werde daher eine immer wichtigere Rolle bei gemeinnützigen Instituten wie Icrisat spielen, prophezeit der Direktor. Dafür aber braucht man Geld, und das, bemängelt Ryan, wird zunehmend knapper. „Die Geberländer sind ziemlich selbstzufrieden geworden. Wahrscheinlich liegt das daran, daß es in den letzten Jahren keine wirklich großen Hungersnöte gegeben hat.“

(erschienen in „DIE WELT“ am 27. Dezember 1991. ICRISAT wurde besucht auf Einladung der Welternährungsorganisation der UNO (FAO))

Der lange Weg zum intelligenten Roboter

Der erste Schritt ist getan: Deutsche Wissenschaftler haben eine Nervenzelle und einen Transistor miteinander verbunden. Die Nervenzelle als biologische Einheit erzeugt einen äußerst schwachen Stromimpuls, der an das elektronische Bauteil weitergeleitet und dort tausendfach verstärkt wird. Während die Ulmer Forscher ausgehend von der „biologisch-technischen Synapse“ langfristig an die Entwicklung neuer Sensoren denken, ist die Fantasie mancher Zeitgenossen den technischen Möglichkeiten bereits weit vorausgeeilt.

Sie träumen davon, die Fähigkeiten von Mensch und Maschine zu vereinen und so die biologisch gesetzten Grenzen des eigenen Daseins zu überwinden. Zeuge dieser Träume ist eine Fülle von mehr oder weniger gut gemachten Büchern und Kinofilmen, vom Science-Fiction-Klassiker „2001 – Odyssee im Weltraum“ mit dem eigensinnigen Bordcomputer HAL 9000 bis hin zum Kampf zwischen guten und bösen Androiden in der Hollywood-Produktion Terminator II.

Noch aus der Zeit des kalten Krieges stammt der Vorschlag, Raketen mit Taubenhirnen auszustatten. Wenn es irgendwie gelänge, die Zellen eines Tieres „umzuprogrammieren“, könnte man eine intelligente Waffe schaffen, die dann fähig sein sollte, ihr Ziel selbstständig aufzuspüren. Natürlich, so argumentierte man, wären solche Geschosse auch in der Lage, Freund von Feind zu unterscheiden und lohnende Ziele ausfindig zu machen.

Ob derartige Ausgeburten der Ingenieurskunst jemals Realität werden, steht in den Sternen. Cruise-Missiles jedenfalls weichen heutzutage auch ohne Taubenhirn nur wenige Meter von ihrem Ziel ab, und die ehemals aufsehenerregende Idee wurde zu den Akten gelegt. Dennoch ist die Leistungsbilanz moderner Computer im Vergleich zum Tierreich eher ernüchternd. Die Rechenkraft eines Schneckenhirns beispielsweise wird heute gerade von den neuesten Bürocomputern bewältigt. Die schnellsten Supercomputer können es immerhin schon mit einem Mäusegehirn aufnehmen, sind allerdings selten unter zehn Millionen Mark zu haben.

Doch obwohl diese Wunderwerke (die Supercomputer) schon gut 100 Milliarden Informationseinheiten (Bit) pro Sekunde verarbeiten können, bleibt es doch in aller Regel bei der stumpfsinnigen Rechenarbeit. Noch immer sind alle „gewöhnlichen“ Computer bewegungsunfähig. Nur wenige Roboter können heute bereits zwei Treppenstufen überwinden, ohne auf die Nase zu fallen.

Diese Prototypen wie der 220 Kilogramm schwere „Asshy“ im Shibaura Institut für Technologie, Tokyo, sind hingegen zu sehr damit beschäftigt, die Balance zu halten, als daß man sie auch noch mit Rechenaufgaben belästigen könnte. Mit seiner stattlichen Größe von 210 Zentimetern vermag Asshy zwar durchaus zu beeindrucken, Gehversuche sind aber auch nach über zwanzig Jahren Forschung noch mit einem großen Risiko behaftet, wie Asshys geistiger Vater, Akira Sato bereitwillig einräumt.

Eine Ausnahme bilden lediglich die insektenähnlichen Roboter, die am Massachusetts Institute of Technology von Rodney Brooks entwickelt werden. Das bisher erfolgreichste Modell, der sechsbeinige „Genghis“ hat etwa die Größe eines Schuhkartons und schafft es immerhin seine Bewegungen zu koordinieren. Was fehlt ist allerdings nach immer ein Roboter – ob in Menschengestalt oder nicht – der die Fähigkeit zur freien Bewegung kombiniert mit einer akzeptablen Rechenleistung.

Doch wäre es nicht wunderbar, wenn man einer Maschine auch Entscheidungen zumuten könnte, die ein gewisses Urteilsvermögen voraussetzen? Wenn diese Maschinen in der Lage wären, Probleme selbsttätig zu erkennen und zu lösen? Wäre dies nicht ein weiterer Schritt hin zu ein Gesellschaft, in der die Menschen nur noch das tun, was ihnen zusagt?

In diese Richtung bewegen sich die Vorstellungen von Hans Moravec, Direktor des Labors für mobile Roboter an der amerikanischen Carnegie Mellon Universität. Er eröffnet sein unter Wissenschaftlern heiß diskutiertes, Buch „Mind Children“ mit den Worten: „Ich glaube, daß Roboter mit menschlicher Intelligenz in fünfzig Jahren weit verbreitet sei werden.“

Über die Frage, ob derartige Maschinen jemals ein „Bewußtsein“ entwickeln können, gehen die Ansichten ebenfalls stark auseinander. Moravec ist der Meinung, daß alles was dafür gebraucht wird, ein Modell der Außenwelt sei, das komplex genug ist um die Konsequenzen verschiedener Entscheidungen durchzuspielen. Er glaubt, dass der Zeitpunkt schon abzusehen ist, an dem jede wichtige körperliche oder geistige Funktion des Menschen ein künstliches Pendant haben wird. „In spätestens fünfzig Jahren haben wir den intelligenten Roboter, eine Maschine die denken und handeln wird wie ein Mensch.“

(erschienen in „DIE WELT“ am 13. November 1991)

Ethische Fragen drängen sich auf

Im jüngsten Kino-Kassenschlager, dem „Terminator II„, wird der Zuschauer mit einer recht gewalttätigen Vision geschockt: Intelligente Maschinen, von Menschen erdacht und gebaut, sollen im Jahr 1997 die amerikanische Verteidigung übernehmen. Als die Militärs feststellen, daß die Supercomputer ein eigenes Bewußtsein entwickeln, versucht man den Stecker zu ziehen. Die Maschinen antworten mit einem atomaren Gegenschlag; drei Milliarden Menschenleben werden ausgelöscht.

Die Geschichte von den Robotern, die durchdrehen und die Kontrolle an sich reißen, ist zwar alles andere als neu, dennoch gibt es Grund zur Vorsicht. Als die Computer des amerikanischen Lenkwaffenkreuzers Vincennes am 3. Juli 1988 einen iranischen Airbus nicht von einem Militärjet zu unterscheiden vermochten, verloren 290 Zivilisten ihr Leben. Wenn schon „gewöhnliche“ Technologie zu derartigen fatalen Verwechselungen führen kann, ist dann die Gefahr durch denkende, lernfähige und somit auch unberechenbare Computer nicht ungleich größer?

Eine neue Broschüre des Bundesforschungsministeriums räumt hierzu ein, daß die Anwendungsmöglichkeiten neuronaler Netzcomputer „natürlich auch den Keim zu unkontrollierbarer Eigendynamik“ in sich bergen. Aus diesem Grunde sei eine die technische Entwicklung begleitende Technikbewertung erforderlich, formulierte eine zehnköpfige Expertenkommission. An eine Einschränkung der Forschungstätigkeit oder gar an ein Verbot der Entwicklung neuronaler Netze wird aber nicht gedacht. Zu vielfältig sind offensichtlich die Vorteile der neuen Technologie, die von medizinischen Anwendungen über Spracherkennung und -übersetzung bis hin zur Erkundung des Weltalls reichen, um nur einige Beispiele zu nennen.

Schon länger als die Neuroinformatiker machen sich Biologen und Mediziner Gedanken über die Konsequenzen ihres Tuns. Denn einerseits finden die Resultate der Neurobiologie ja unmittelbaren Eingang bei der Entwicklung künstlicher Neuronaler Netze; andererseits bringt die Erforschung des menschlichen Gehirns auch eine Vielzahl eigener ethischer Probleme mit sich.

Schon die Experimente selbst, die ja in den weitaus meisten Fällen an Versuchstieren durchgeführt werden, stoßen oft auf heftige Kritik in der Öffentlichkeit. Bilder von jungen Katzen oder von Menschenaffen, deren Hirnströme mit Hilfe von implantierten Elektroden gemessen werden, haben – nicht nur auf den Tierfreund – eine stark emotionalisierende Wirkung. Ob die Tiere bei diesen Experimenten nun Schmerz empfinden oder nicht, ob die Experimente zu meßbaren Fortschritten in der Medizin führen und ob diese Art der Nutzung von Mitgeschöpfen mehr oder weniger grausam ist als die gemeinhin akzeptierte Massentierhaltung, danach wird nur in Ausnahmefällen gefragt.

Der Frankfurter Hirnforscher Wolf Singer ist sicher kein Einzelfall: „Wenn Rundfunk oder Fernsehen anrufen, heißt es immer nur: Hier haben wir was gegen Sie vorliegen. Sie können, wenn Sie wollen, um fünf vorbeikommen und noch schnell ein Statement zu Ihrer Verteidigung abgeben.“ Zu komplex sind wohl die Probleme, mit denen die Neuroforscher zu kämpfen haben, zu gering der „Unterhaltungswert“, um die notwendige öffentliche Diskussion anzustoßen, an der beide Seiten brennend interessiert sein sollten.

Denn je mehr wir über die Funktion der grauen Zellen herausfinden, umso größer werden auch die Chancen zur Manipulation. Einer Ratte, der man die Möglichkeit gegeben hatte, durch Tastendruck eine Elektrode im eigenen Hirn zu stimulieren, betätigte den „Lustschalter“ an die 5000-mal in der Stunde – bis sie erschöpft zusammenbrach.

Buchautor Johannes Holler („Das neue Gehirn“) bezeichnet das Hirn zu Recht als den größten Drogenhersteller und -Konsumenten. Die dort hergestellten Botenstoffe verändern im Zusammenspiel mit ihren Ankerplätzen in jeder Sekunde unsere Wirklichkeit; erzeugen Liebe und Lust, Haß und Depression. Rund 70 Botenstoffe und 50 Ankerplätze sind bisher bekannt, und ständig werden neue dazu entdeckt.

Durch die gezielte Entwicklung neuer Medikamente könnte beispielsweise die Wirkung des Rauschgiftes Cannabis aufgehoben werden, indem man den seit kurzem bekannten Ankerplatz blockiert. Auch einem Eiweiß, an dem Kokain seine Wirkung entfaltet, sind die Forscher auf der Spur. Ein Ersatzstoff für Nikotin, das ebenfalls bestimmte Rezeptoren im Gehirn aktiviert, könnte Millionen Raucher von ihrer Sucht befreien.

Doch nicht nur Suchtkranke, sondern auch Millionen von Patienten, die alleine in Deutschland an Depressionen, Schizophrenie, Epilepsie und der Alzheimer´schen Krankheit leiden, wollen die Möglichkeiten der Neuroforschung nutzen. Sie vertrauen darauf, daß unsere Gesellschaft mit den Risiken und Versuchungen dieser Wissenschaft besser zurechtkommt als lustbesessene Laborratten.

(erschienen in „DIE WELT“ am 8. November 1991)

Fleißig arbeiten und wissenschaftlich denken

Der Robert-Koch-Preis, einer der höchsten deutschen Wissenschaftspreise, wurde gestern in Bonn verliehen. Preisträger der mit 100.000 Mark dotierten Auszeichnung sind der Belgier Walter Fiers und der Japaner Tadatsugu Taniguchi. Die Robert-Koch-Medaille in Gold für das Lebenswerk eines Forschers erhielt Professor Werner Schäfer, „einer der großen Pioniere der Virusforschung in Deutschland“, wie der Laudatio zu entnehmen war.

Alljährlich ehrt die Robert-Koch-Stiftung mit der Preisvergabe Wissenschaftler, die sich besondere Verdienste bei der Erforschung von Infektions- und anderen Volkskrankheiten erworben haben. Diese Anforderung trifft auf den 79jährigen Schäfer sicherlich in besonderem Maße zu. Professor Rudolf Rott, Direktor des Instituts für Virologie der Universität Gießen, lobte den gebürtigen Westfalen: „Bei ihm haben wir gelernt, nicht nur fleißig und sauber zu arbeiten, sondern auch naturwissenschaftlich zu denken.“

Einer von vielen Influenza-Viren: Der Erreger der Schweine-Grippe unter dem Elektronenmikroskop (Photo: C. S. Goldsmith and A. Balish, CDC / Public domain)

Ausgehend vom Hühnerpestvirus und anderen Vertretern aus der Gruppe der Myxoviren wandte sich Schäfer bald auch den Krankheitserregern beim Menschen zu. Am Tübinger Max-Planck-Institut für Virusforschung fand er heraus, daß seine Geflügelviren nahe verwandt waren mit den Partikeln, welche die Volksseuchen Influenza, Mumps und Masern hervorrufen. Die Influenza oder echte Grippe war bis zur Einführung weltweiter Impfkampagnen eine der großen Geißeln der Menschheit; alleine bei der Epidemie der Jahre 1918 und 1919 starben über 20 Millionen.

Schäfer war es, der aus seinen Untersuchungen die – richtige – Vermutung ableitete, daß bestimmte Geflügelviren ein unerschöpfliches Reservoir für die Entstehung immer neuer Influenzavarianten sein könnten. Auch die Überlegung, daß sich ein vollständiger Impfschutz erreichen ließe, wenn man dem menschlichen Immunsystem bestimmte Eiweiße von der Oberfläche der Viren präsentieren würde, erwies sich im Nachhinein als richtig.

Anfang der sechziger Jahre begann sich der gelernte Tierarzt dann mit Retroviren zu beschäftigen, zu denen auch das damals noch unerkannte Aidsvirus HIV gehört. Für diese Gruppe von Krankheitserregern entwickelte Schäfer ein Strukturmodell, das heute allgemein anerkannt ist. „Häufig stehen allerdings Schäfer und Mitarbeiter nicht mehr als Quellenangabe unter diesen Modellen“, monierte der Preisträger.

Bahnbrechende Erfolge bei der Erforschung von tierischen Viren hat auch Walter Fiers von der Universität Gent vorzuweisen. Er entschlüsselte 1978 als erster die komplette Erbinformation eines Tumorvirus. SV 40, so der Name des Erregers, kann bei Hamstern bösartige Geschwüre verursachen. Auch das dafür verantwortliche Gen konnte Fiers isolieren. Dieser Triumph führte dann unmittelbar zur Entdeckung eines menschlichen Gens – p 53 -, das eine genau entgegengesetzte Wirkung hat. Das p 53 ist ein sogenanntes Suppressorgen; eine von vielen Erbanlagen, deren Beschädigung zur Krebsentstehung führen kann.

Ende der siebziger Jahre wandte sich Fiers ebenso wie der japanische Preisträger Taniguchi der Erforschung von Botenstoffen zu, die innerhalb eines Organismus bereits in kleinsten Mengen die Entwicklung von Geweben und Zellen beeinflussen können. Während Fiers die Interferone untersuchte, von denen man sich anfangs große Hoffnungen für eine Krebstherapie gemacht hatte, erforschte Taniguchi die Wirkung einer anderen Stoffklasse, der Interleukine.

Besonders Interleukin-2, so weiß man heute, wirkt auf mehrere verschiedene Typen von Immunzellen. Für detaillierte Untersuchungen stand aber zunächst nicht genug an diesem Eiweiß zur Verfügung. Das änderte sich erst, als Taniguchi das Gen, also den molekularen Bauplan, für Interleukin-2 isolierte und mit Hilfe von bakteriellen Zellen in größeren Mengen herstellen konnte. Aus dem Zusammenspiel mit anderen Botenstoffen, so hofft der Japaner, könnten sich bald schon neue Ansätze zur Krebstherapie ergeben.

(erschienen in „DIE WELT“ am 5. November 1991)

Sprechende Maschine

Einen Computer, der Texte erkennt und vorliest, präsentierte Professor Terrence Sejnowski in einer amerikanischen Fernsehshow. Die Zuschauer waren begeistert von der ersten TV-Demonstration eines künstlichen neuronalen Netzes. Ein perfektioniertes System könnte etwa Blinden aus der Zeitung vorlesen; öffentliche Bibliotheken ließen sich per Telefon abfragen.

Nur Marvin Minsky, der jahrelang gepredigt hatte, daß derartige Leistungen nur mit der Progammiertechnik der Künstlichen Intelligenz zu verwirklichen seien, wollte das „Gestammel“ nicht verstanden haben. Wie auch immer, der Computer verdankt seine Fähigkeiten einem Programm (NETtalk), das eine Anordnung von mehreren Hundert Nervenzellen in drei Schichten simuliert. Die Eingabeschicht erkennt Textstücke von je sieben Buchstaben und ist über eine Zwischenschicht mit 26 „Ausgabeneuronen“ verbunden. Diese spezialisieren sich auf 17 Phoneme, auf Pausen, Betonungen und Übergänge – die Grundelemente der Sprache.

Anfangs gibt der angeschlossene Lautsprecher nur Unsinn von sich, doch wird nach jedem Fehler die korrekte Aussprache in der Ausgabeschicht eingestellt und die Stärke der Verbindungen zur Zwischenschicht verändert. Verbesserte Aussprache wird mit verstärkten Verbindungen zur Ausgabeschicht „belohnt“ und umgekehrt; langsam tastet man sich an das richtige Ergebnis heran.

Nach dem Lernen einiger Tausend Worte klingt das Netz in etwa 90 Prozent aller Fälle richtig – und das völlig ohne Regelwerk und ohne eine lange Liste der vielen sprachlichen Ausnahmeregeln. Unbekannte Worte werden fast so gut erkannt wie bereits einstudierte. NetTalk lernt also Regeln, die weder Linguisten noch Neurobiologen noch Programmierer bisher ergründen konnten.

(erschienen in „DIE WELT“ am 30. Oktober 1991)

Interview mit Wolf Singer

 

Ankündigung des Interviews auf Seite 1

Wolf Singer ist einer der renommiertesten deutschen Hirnforscher, (inzwischen ehemaliger) Direktor am Max-Planck-Institut in Frankfurt und war später Mitbegründer des Frankfurt Institute of Advanced Sciences. Ich durfte ihn für die Reihe „WELT im Gespräch“ interviewen, und hier ist das Ergebnis:

Das Gehirn des Menschen ist zweifellos das komplizierteste Gebilde, das wir kennen. Viele Wissenschaftler sind der Ansicht, wir könnten das Gehirn nie vollständig verstehen. Sie dagegen haben Ihre gesamte Karriere diesem Unterfangen gewidmet. Warum tun Sie das?

Singer: Das Gehirn hat mich schon immer interessiert. Ich habe nie Medizin studieren wollen, um praktischer Arzt zu werden wie mein Vater. Ich wollte ein Studium Generale absolvieren, mich mit dem Lebendigen beschäftigen, am liebsten gleich mit dem Menschen. Während meiner Studienzeit in München hat man Epileptiker noch häufig dadurch behandelt, daß man die Verbindungen zwischen den beiden Hirnhälften durchtrennte. Dabei stellte man fest, daß nicht alles, was vom Menschen wahrgenommen wird, daß nicht alle Reize, auf die der Organismus reagiert, auch bewußt verarbeitet werden.

Eine ganze Hälfte des Gehirns, so fand man, kann nicht „reden“ und über das berichten, was sie gemacht hat. Damals hat man versucht, diese Beobachtung im Zusammenhang mit der Schizophrenie zu sehen. Die Idee war, daß der Schizophrene deshalb die gespaltenen Bewußtseinszustände hat, weil er seine beiden Hirnhälften nicht koordinieren kann. Eine Hypothese, die jetzt keiner mehr aufrechterhalten würde. Ich bin damals in München durch ein Seminar über die neuronalen Grundlagen des Bewußtseins in Berührung gekommen mit der Hirnforschung, habe mich dann um eine Doktorarbeit bemüht und die habe ich auch gekriegt.

Das heißt, Sie hatten schon ganz von Anfang an auch eher philosophische Fragen im Hinterkopf; Sie glaubten, mit biologischen Methoden vielleicht so etwas wie ein Bewußtsein ergründen zu können?

Singer: Ich bin immer davon ausgegangen, daß unsere geistigen Leistungen auf biochemischen Vorgängen beruhen und etwas mit der Hirnfunktion zu tun haben müssen. Eine wichtige Motivation für alle, die eine medizinische Ausbildung haben, ist natürlich auch die Einsicht, daß ganz große Krankheitskomplexe vollkommen unverstanden sind, soweit sie mit dem Zentralnervensystem zusammenhängen. Es gibt bis heute überhaupt keine akzeptable Erklärung für die endogenen Depressionen oder für die Schizophrenien, obwohl die Krankheiten außerordentlich häufig sind. Ein bis zwei Prozent der Bevölkerung werden irgendwann einmal in einem der beiden Bereiche klinisch auffällig. Alles, was man da therapeutisch macht, beruht auf Versuch und Irrtum. Man weiß halt, das funktioniert irgendwie, aber warum das funktioniert, oder warum was nicht funktioniert, weiß keiner.

Dann plagt einen natürlich das katastrophale Unvermögen nach Hirnverletzungen. Therapeutische Bemühungen sind erfolglos, weil beschädigte Nervenzellen nicht nachwachsen. Jetzt lernt man allmählich, daß das nicht so sein muß, daß während der Evolution des Menschen solche Mechanismen nicht eingebaut worden sind, weil es vermutlich früher überhaupt keinen Sinn gemacht hat, nach Schädel-Hirnverletzungen, die so schwerwiegend waren, daß es im Gehirn zu Veränderungen kam, noch Reparaturmechanismen einzubauen. Diese Verletzungen sind ohnehin nie überlebt worden. Das hat sich mittlerweile geändert.

Durch intensive medizinische Bemühungen überleben heute viele Unfallopfer auch schwere Hirnverletzungen. Noch kann man die Schäden nicht wirklich reparieren. Aber es zeichnet sich jetzt schon die Möglichkeit ab, daß es gelingen wird, die Prozesse wieder anzustellen, die während der Entwicklung des Menschen ablaufen. Am Rückenmark, bei Querschnittslähmungen gibt es jetzt wirklich zum ersten Mal Hoffnungen.

Für den Laien erscheint das Gewebe des Gehirns beim Blick durch das Mikroskop als heilloses Durcheinander von undefinierbaren Strukturen, ein undurchdringliches Dickicht aus hunderten verschiedener Zelltypen. Wie kann man denn da noch die Hoffnung bewahren, dieses Gebilde irgendwann einmal wirklich verstehen zu können?

Singer: Ja, das kommt einem natürlich nach wie vor frivol vor. Aber es ist halt so in der Natur, daß sehr komplexe Funktionen auf einfache Prinzipien zurückgehen. Ob das wirklich so ist, wissen wir nicht, aber der Gestaltdruck unserer Seele macht, daß wir nach einfachen Prinzipien suchen. Und wir finden sie auch. Man kann erstaunlicherweise trotz der ungeheuren Komplexität in vielen Bereichen überschaubare, einfache allgemeine Funktionsprinzipien angeben. Es funktioniert. Und man kann das ja auch imitieren in künstlichen Systemen und sieht, daß die dann – wenn auch sehr primitive – Leistungen erbringen können.

Ihre Arbeiten zeigen, daß die Strukturen des Gehirns sich in einem Wechselspiel mit Umwelteinflüssen herausbilden. Demnach wird die Entwicklung dieses Organs also nicht ausschließlich von unseren Genen gesteuert?

Singer: Das läßt sich am Beispiel der Hirnrinde am besten illustrieren. Es ist ja so, daß die Komplexität der Verschaltungen der Hirnrinde eine Größenordnung erreicht hat, die es unmöglich macht und auch sinnlos erscheinen läßt, jede einzelne Verbindung genetisch festzulegen. Das würde einen ungeheuren Codierungsaufwand erfordern. Ich weiß nicht, wie gut die Berechnungen sind, aber es gibt zumindest Vermutungen, daß das in den Genen gespeicherte Material nicht ausreicht, um das alles zu strukturieren. Außerdem hätte dies den Nachteil, daß das System dann sehr unflexibel wird und sich nicht gut anpassen kann an die realen Gegebenheiten.

Nun sieht man, daß während der Entwicklung wichtige Entscheidungen über die endgültige Verdrahtung von Arealen in der Hirnrinde oder von einzelnen Nervenzellen im Dialog mit der Umwelt gefällt werden. Man muß dann nicht alles von vornherein festlegen, sondern man kann warten, bis die Information von außen verfügbar wird. Das System kann sich dann viel besser an die wahren Begebenheiten anpassen.

Nun, weil das so ist und weil jeder Organismus in einer anderen Umwelt aufwächst, wird es sinnlos, über die allgemeinen Verschaltungsprinzipien hinaus, die natürlich von Individuum zu Individuum gleich sind, auch noch im Detail nach Wiederholungen zu suchen. Die wird man nicht finden, weil sich jedes Hirn ein bißchen anders selbstorganisiert. Und deshalb muß man die Prinzipien rauskriegen, nach denen sich das Gehirn entwickelt. Nur so kann man verstehen, wie das Ganze funktioniert. Das ist wichtiger als zu versuchen, das fertige System in allen Einzelheiten aufzudröseln. Letzteres würde zu so vielen verschiedenen Beschreibungen führen, wie man Gehirne untersucht.

Kann man denn beziffern, wie stark die menschliche Entwicklung von der Umwelt beeinflußt wird, und wie groß der Anteil unserer Gene ist?

Singer: Wahrscheinlich ist die Frage schon falsch gestellt. Das jetzt in Prozent unterteilen zu wollen, ist nicht möglich, weil Sie im Nachhinein nicht unterscheiden können, ob eine bestimmte Verbindung nicht da ist, weil sie genetisch nicht angelegt worden ist, oder weil sie zunächst genetisch vorgesehen war, und später wieder abgeräumt worden ist. Das greift so eng ineinander, daß die genetischen Instruktionen und die Instruktionen, die aus dem Umfeld kommen, gar nicht richtig zu trennen sind. Das fängt schon ganz am Anfang an, mit der befruchteten Eizelle.

Gene sind nie alleine irgendwo. Die sitzen schon im Kern in einer Zelle, die ein Umfeld für die Gene darstellt. Und die Zelle sitzt in der Regel eingebettet in einem Organismus. Die ersten Signale, die die Gene anschalten, die kommen ja von außen, die kommen nicht aus den Genen selber, sondern das ist die Umgebung, die sagt, so jetzt fangt mal an, euch zu verdoppeln, jetzt wird geteilt. Also, die Entwicklung ist von Anfang an ein Dialog zwischen Genen und deren Umgebung. Und wenn man das eine wegnimmt oder das andere wegnimmt, bleibt der Entwicklungsprozeß stehen.

Lassen sich diese Erkenntnisse, die ja vorwiegend durch Versuche an Katzen und Affen gewonnen wurden, so ohne weiteres auf den Menschen übertragen?

Singer: Ja, diese Untersuchungen, die natürlich alle an Tieren vorgenommen worden sind, die lassen sich direkt auf den Menschen und auf die Entstehung menschlicher Krankheiten übertragen. Bei einem Kind, das schielt, zeigen sich in der Hirnrinde genau die gleichen Veränderungen wie sie auch bei einer schielenden Katze oder bei einem schielenden Affen gefunden wurden. Man kann Aufgrund der Tierversuche Voraussagen machen darüber, wie die Wahrnehmung beim Menschen gestört wird. Das ist eine ganz direkte Entsprechung.

Können Sie ein Beispiel für die praktische Umsetzung Ihrer Forschung in den klinischen Alltag geben?

Singer: Man hat aus diesen Tierversuchen gelernt, daß bestimmte Leistungen während kritischer Altersphasen erworben werden. Wenn die Verschaltung der Nervenzellen nicht zum richtigen Zeitpunkt erfolgt, dann läßt sich das nicht mehr nachholen. Das ist sowohl für den Erwerb der Sehfähigkeit als auch für den Sprachgebrauch nachgewiesen. Möglicherweise gilt das auch für den Erwerb höherer, sozialer Leistungen.

Im Bereich der Sehphysiologie haben die Tierversuche ganz bestimmt das Bewußtsein dafür geschärft, daß man frühzeitig erkennen muß, wenn was schiefläuft. Also, wenn man Schielkinder hat, dann weiß man, daß ganz früh und hartnäckig therapiert werden muß, wenn man die kritische Phase nicht verpassen will. Früher hat man gedacht, jetzt lassen wir die erst mal auswachsen, und dann reparieren wir die Stellung der Augen. Aber dann ist es zu spät.

Das gleiche gilt, wenn Reize aus der Umwelt das Gehirn über längere Zeit hinweg nicht erreichen. Früher war das relativ häufig, daß durch Trübungen der Hornhaut oder Linsentrübungen die Aufnahme optischer Signale durchs Auge gestört war. Das haben die Leute nicht besonders ernstgenommen und haben gedacht, dann warten wir halt, bis die im operationsfähigen Alter sind, bis man das bequem machen kann, und dann tauschen wir die Linsen aus und machen die Hornhaut wieder sauber. Bis man gelernt hat, daß das überhaupt nichts mehr nutzt, weil die Reifungsprozesse in der Hirnrinde, die der Erfahrung bedürfen, abgelaufen sind und nicht nachgeholt werden können. Und deshalb operiert man jetzt, wenn man mit solchen Problemen konfrontiert wird, so früh wie nur irgend möglich.

Lassen sich die Erkenntnisse auch bei der Erziehung von Kindern umsetzen?

Singer: Das ist schwer zu beantworten. Die kulturhistorische Entwicklung zeigt, daß die Menschen selber auf ganz vieles gekommen sind, ohne daß sie über kritische Phasen und Neurophysiologie Bescheid wußten. Man weiß einfach, daß man Kinder früh mit Sprache konfrontieren muß, damit sie es lernen, und wenn sie eine Fremdsprache zusätzlich erwerben sollen, dann muß man das auch früh machen, damit man die kritische Phase nicht verpaßt.

In diesem Bereich kann man natürlich sagen, die Menschen haben irgendwann gelernt, daß man den Kindern möglichst früh möglichst viele Stimuli geben sollte. Aber die Hirnforschung gibt mittlerweile ja sogar Hinweise darauf, wie das menschliche Bewußtsein zustande kommen könnte.

Singer: Ja, das ist zurzeit ein sehr faszinierendes Gebiet. Die Philosophen haben das ja auch zur Kenntnis genommen, daß im Bereich der Neurobiologie jetzt Entdeckungen möglich werden, die direkt relevant sind für philosophische Diskussionen, insbesondere für erkenntnistheoretische Ansätze. Andererseits gibt es eine stattliche Anzahl von Psychologielehrstuhl-Inhabern in Europa, insbesondere in der Bundesrepublik, die sagen, sie brauchten die Neurobiologie nicht, weil die Neurobiologie immer wieder Konzepte entwickelt hat, die die Psychologie in die Irre geführt habe. Das muß man sich mal klarmachen!

Das Wissen über die Mechanismen, durch die sich entwickelnde Gehirne Wissen über die Umwelt erwerben und das so erworbene Wissen dann wieder benutzen, um die Umwelt zu interpretieren, um Konstrukte zu bauen, das ist für die Erkenntnistheorie schon sehr wichtig. Es läßt sich in diesem Licht wohl nicht mehr aufrechterhalten, daß wir in der Lage wären, die Welt so zu erkennen, wie sie ist. Es wird immer deutlicher, daß unsere Hirne Konstruktionen entwerfen, die auf unsere Bedürfnisse zugeschnitten sind.

Beispielsweise ist unser Begriff von Materie nur entstanden durch die unmittelbare Erfahrung, die unsere Sinnessysteme möglich machen – und auch zwar nur in einem ganz engen Bereich des Größenkontinuums physikalischer Dimensionen. Das gilt eben alles so im Zentimeter- und Millimeterbereich, aber wenn man durch Instrumente guckt, die einem entweder den ganz großen Bereich zugänglich machen, das Weltall oder den ganz kleinen Bereich, den atomaren und subatomaren Bereich, dann sieht man, daß diese Konzepte und Beschreibungen da nicht zutreffend sind.

Könnte man vielleicht überspitzt sagen, daß die Grenzen der Erkenntnis durch die Strukturen unseres Gehirns vorgegeben sind und gar nicht so sehr durch die Möglichkeiten der Naturwissenschaft?

Singer: Naturwissenschaft selber ist ja schon ein Kulturprodukt und damit Produkt von interagierenden Gehirnen. Insofern werden sich in den Beschreibungssystemen der Naturwissenschaften natürlich die Axiome widerspiegeln, jene als absolut richtig anerkannten Grundsätze, für die es keines weiteren Beweises bedarf. Auch diese Axiome sind zunächst einmal durch Primärerfahrungen des Gehirns entwickelt worden.

Sie haben, vereinfacht ausgedrückt, Hinweise darauf gefunden, wie das Bewußtsein zustande kommt. Gruppen von Nervenzellen (Neuronen), die Reize vom selben Objekt erhalten, feuern demnach ihre Signale im Gleichtakt, auch wenn diese Zellen im Gehirn räumlich getrennt sind.

Singer: Trotz der gewaltigen Zahl von hundert Milliarden Neuronen kann unser Gehirn unmöglich alle möglichen Erscheinungsformen aller möglichen Objekte in einzelnen Zellen abspeichern, das würde die Zahl dieser Zellen sehr schnell erschöpfen. Demnach muß die Repräsentation von Figuren, Objekten, Inhalten, auch von Symbolen immer durch Gruppen miteinander verbundener Zellen Ensembles – erzeugt werden, wobei eine bestimmte Zelle zu verschiedenen Zeitpunkten an verschiedenen Ensembles teilhaben können muß.

Ähnlich wie ein bestimmtes Merkmal in sehr vielen verschiedenen Figuren vorkommen kann, kann eine bestimmte Zelle in sehr vielen verschiedenen Ensembles vorkommen. Wenn man aber jetzt dieses Ensemble-Kodierungskonzept weiterverfolgt, dann kriegt man ein Problem, wenn mehrere Ensembles gleichzeitig aktiv sind, dann wissen sie nämlich wieder nicht, welche Zelle zu welchem Ensemble gehört.

Aus diesem Grund hat Christoph von der Malsburg schon 1981 vorgeschlagen, dem Ensemble eine zeitliche Struktur aufzuprägen, so daß alle Elemente in einem Ensemble immer gleichzeitig und zusammen aktiv sind, und dann kann ein zweites Ensemble ebenfalls aktiv sein, und zwar in einem anderen Takt. Dafür haben wir direkte Beweise gefunden. Gleichzeitig haben aber auch andere Leute darüber nachgedacht, wie es denn gehen kann, daß man trotz heftiger Bemühungen keine Nervenzellen finden kann, die selektiv auf Gesichter oder auf die Großmutter oder auf einen gelben Volkswagen ansprechen.

Es gibt also keine höchste Instanz, in der Bewußtsein passiert, oder in der sich Wahrnehmung kristallisiert?

Singer: Nein, stattdessen gibt es sehr viele Areale, die sich mit unterschiedlichen Aspekten befassen. Die liegen parallel zueinander, sind stark miteinander verflochten. So wird die Information, die vom Auge kommt, auf 20 oder 25 Areale parallel verteilt, die sich nun mit unterschiedlichen Aspekten beschäftigen. Die einen mehr mit Bewegung, die anderen mehr mit Farbe, die anderen mehr mit Formen, die anderen mehr mit Lokalisation im Raum usw. Und nun fragen wir, wie kommt um Gottes Willen das alles wieder zusammen, so daß sie dann zum Schluß den gelben Volkswagen in der Wiese stehen sehen.

Und weil man weder eine Zelle gefunden hat, die den gelben Volkswagen in der Wiese abbildet, noch ein Areal, wo das alles wieder zusammenliefe, mußte man annehmen, die Repräsentation des gelben Volkswagens in der grünen Wiese ist eben die Gesamtheit der Aktivitäten, die in diesen räumlich verteilten Arealen zu dem bestimmten Zeitpunkt vorhanden sind.

Aber wie bindet man die jetzt zusammen? Dafür sind dann Hypothesen formuliert worden, zuerst von dem Nobelpreisträger Francis Crick, daß das irgendwie über eine zeitliche Synchronisation geschehen müsse. Sie brauchen einmal den gelben Volkswagen in der grünen Wiese, ein andermal brauchen sie den Fahrer im gelben Volkswagen, dann müssen sie ganz andere Bindungen machen. Sie können nicht für jede mögliche Konstellation des gelben Volkswagens feste Verbindungen im Gehirn haben, sondern sie brauchen eine dynamische Architektur, die Sie kontextabhängig verändern können. Wir haben dann gesagt, nun ja, wenn das im Sehsystem so läuft, dann wird es ja wohl auch für die Bewegungssteuerung gelten und warum dann nicht gleich überall?

Ein Thema, das die Öffentlichkeit wesentlich stärker erregt als die Erfolge der Grundlagenforschung sind die Tierversuche, die in der gesamten Biomedizin angestellt werden.

Singer: Das ist auch für uns schwierig. Wir werden ja, wie Sie wissen, sehr stark überwacht. Wir müssen für alles, was wir tun, ausführliche Beschreibungen liefern, müssen unsere Vorhaben genehmigen lassen von Kommissionen, in denen Tierversuchsgegner oder Tierschützer sitzen, Fachleute – die in der Minderheit sind – und Persönlichkeiten des öffentlichen Lebens. Darüber hinaus wird natürlich institutsintern jedes Projekt ausführlich diskutiert, und die ethischen Fragen sind implizit immer mit dabei. Sie werden außerdem schon wegen der Handhabbarkeit die Tiere immer in Vollnarkose versetzen, wenn Sie operieren müssen.

Bleibt das Opfern von Leben. Das ist nicht zu umgehen. Wenn man an lebenden Strukturen arbeiten will – und das muß man, wenn man rauskriegen will, wie ein Hirn organisiert ist -, dann nehmen wir damit die Tötung des Tieres in Kauf, wobei das schmerzlos erfolgt. Damit stehen wir nun auf der gleichen Ebene derer, die Tiere töten, um sie zu essen.

Ich vermag nicht zu verstehen, wie man ignorieren kann, daß die Entwicklung von Medikamenten gegen die Epilepsie ausschließlich auf Tierversuche zurückgeht, daß das wachsende Verständnis der Wirkung von suchterzeugenden Drogen ohne diese Versuche nicht möglich gewesen wäre. Für mich ist eine Medizin, die handelt, ohne zu wissen, was sie tut, genauso unerträglich wie eine, die tatenlos daneben steht.

Viele Menschen sagen sich, na ja, wir hören in Deutschland mit diesen Versuchen auf, weil wir ethisch am weitesten entwickelt sind, aber irgendjemand wird ja nachher schon die Polio-Impfstoffe und die Sachen für Aids noch weiterentwickeln, damit man das dann auch weiterverwenden kann. Denn es ist ja ganz schön, wenn man sich Insulin spritzen kann, wenn es die eigene Frau ist oder das eigene Kind. Womit ich schlecht leben kann, ist, wenn Tierversuchsgegner die Familie bedrängen, die Kinder bedrohen. Wir hatten hier auch einen Molotow-Cocktail-Anschlag aufs Labor. Nur durch Zufall ist das Haus nicht in die Luft gegangen. Da werden wir halt manchmal grantig.

In Deutschland scheint die Grundlagenforschung kein allzu hohes Ansehen zu genießen, anders als beispielsweise in den Vereinigten Staaten.

Singer: Ich glaube, wir haben uns daran gewöhnt, daß der Wissenschaftler in Deutschland eher ein Buhmann ist. Wir werden ja nicht zu den Kulturträgern gezählt – Kultur, das sind die schönen Künste und die Geisteswissenschaften. Daß Naturwissenschaften auch einen starken kreativen Aspekt haben, auch eine künstlerische Ader verlangen und eigentlich mit zum Kulturbetrieb gehören, das ist hier wenig verankert. Zur Allgemeinbildung gehört das Wissen um Goethes Biographie. Neulich habe ich irgendwo gehört, daß immer noch zwanzig Prozent meinen, daß die Sonne um die Erde kreist, also da hängt sicher was schief.

Die meisten meiner Freunde sind nicht aus dem naturwissenschaftlichen Bereich. Aber eins scheint mir doch wohl zuzutreffen, daß die Wissenschaftler im Allgemeinen, wenn sie gut sind, sich dadurch auszeichnen, daß sie relativ wenig Vorurteile haben, relativ wenig verführbar sind und einen relativ gut entwickelten Skeptizismus haben gegenüber der Verläßlichkeit von irgendetwas. Und das sind eigentlich Eigenschaften, die in einer Demokratie ganz brauchbar sind.

Erstaunlich, daß die deutsche Hirnforschung im internationalen Vergleich trotz dieser Hemmnisse so gut dasteht.

Singer: Wir werden gut unterstützt. Insbesondere die mehr integrative Hirnforschung ist hier noch relativ gut erhalten trotz des enormen Zuwachses der Molekularbiologie, die weltweit jetzt boomt. Aber das wird uns für die Zukunft ein wertvolles Kapital sein, daß wir hier viel erhalten haben, trotz der gleichzeitigen sehr guten Entwicklung der Molekularbiologie.

Die Finanzierung war über die letzten Jahre sehr gut, ich würde denken, wir stehen hier europaweit an der Spitze. Entsprechend gut sind auch die Resultate. Aber jetzt wird es schwierig durch die Kosten der Wiedervereinigung. Das werden wir deutlich zu spüren kriegen, daß das nicht alles umsonst geht. Schon jetzt hat der Tarifabschluß von sechs Prozent die versprochenen fünf Prozent Zuwachsraten, die in der Deutschen Forschungsgemeinschaft (DFG) und in der Max-Planck-Gesellschaft festgeschrieben waren, aufgefressen. Viele Probleme der DFG und der Max-Planck-Gesellschaft könnten mit 100 Millionen Mark gelöst werden. Sie müssen schreiben, daß es schwierig wird, und daß die ja nicht anfangen dürfen, sich jetzt auf den Lorbeeren auszuruhen.

(erschienen in „DIE WELT“ am 28. Oktober 1991)