Zum Hauptinhalt springen

Genanalysen – Chancen und Risiken

Fluch und Segen zugleich birgt die Möglichkeit einer Gendiagnose, wie der Amerikaner Henry T. Lynch aus eigener Erfahrung zu berichten weiß. Der grauhaarige Wissenschaftler von der Creighton Universität im Bundesstaat Nebraska hat seine ganze Karriere der Untersuchung erblicher Krebserkrankungen gewidmet – eine besonders bösartige Form des Darmkrebses, das Lynch-Syndrom, trägt sogar seinen Namen.

Auf einem Fachkongreß in Bonn schilderte der Mediziner kürzlich die enormen Belastungen, unter denen die weiblichen Mitglieder einer Großfamilie aus Omaha zu leiden haben. Bei dieser Familie tritt eine aggressive, erbliche Krebsform seit Generationen mit erschreckender Häufigkeit auf. Jede zweite Frau in dieser Familie muß damit rechnen, daß sich in der Brust- oder in den Eierstöcken lebensbedrohliche Geschwüre bilden.

Ein molekularbiologisches Verfahren, das erst in den letzten Jahren entwickelt wurde, erlaubt es seit kurzem, die Frauen anhand ihrer Gene in zwei gleichgroße Gruppen zu trennen: Mitglieder der einen Gruppe werden von ihrer Angst erlöst; ihr Krebsrisiko ist nicht höher als das in der normalen Bevölkerung. Die Frauen der anderen Gruppe tragen dagegen mit 98-prozentiger Wahrscheinlichkeit ein defektes Gen. „Im Prinzip können wir das zum Zeitpunkt der Geburt feststellen“, sagt Lynch, der selbst einen wichtigen Beitrag zur Entwicklung der Methode geleistet hat.

Für Frauen in der zweiten Gruppe ist das  Risiko drastisch erhöht, schon in mittlerem Alter an dem erblichen Brust-Ovariar Krebs-Syndrom (HBOC) zu erkranken. Auch durch halbjährliche Untersuchungen der bedrohten Organe und selbst die vorsorgliche operative Entfernung der Eierstöcke kann die Gefahr lediglich verringert werden. Nachdem Lynch die Frauen in ihrer vertrauten Umgebung in persönlichen Gesprächen über ihre Lage aufgeklärt hatte, stellte er eine Frage, die mit zunehmender Verbreitung genanalytischer Verfahren auf immer mehr Menschen zukommen wird: „Wollen Sie wirklich wissen, ob Sie in 15, 20 oder 40 Jahren damit rechnen müssen, an einer möglicherweise unheilbaren, tödlichen Krankheit zu leiden?“

Nach einer dreiwöchigen Bedenkzeit und eingehender Beratung entschieden sich die meisten Frauen schließlich für den Gentest. Menschliche Dramen hätten sich abgespielt, als die Resultate bekannt gegeben wurden, erinnert sich Lynch. Dramatisch auch ein weiteres Ergebnis: Unter den Frauen, bei denen ein defektes Gen gefunden wurde, verlangte die Hälfte, sämtliche Eintragungen in den Krankenakten zu löschen.

„Die Versicherungen sind ganz wild auf diese Daten, weil sie die Menschen mit erhöhtem Risiko am liebsten ausschließen würden“, erläutert Lynch. Um ähnliche Machenschaften in Deutschland bereits im Keim zu ersticken, streben Mitglieder aller im Bundestag vertretenen Fraktionen eine Ergänzung des Grundgesetzes an. Dort soll, gemäß einem Vorschlag der Verfassungskommission, in Artikel 74 die künstliche Befruchtung beim Menschen sowie die Untersuchung und die künstliche Veränderung von Erbinformationen aufgenommen werden. Ein Gesetz zur Genomanalyse würde damit auch der Zustimmung des Bundesrates bedürfen und hätte dann – im Gegensatz zu anderen gesundheitsrechtlichen Gesetzen – über die Ländergrenzen hinaus Gültigkeit.

Von einer bundeseinheitlichen Regelung erwartet die forschungspolitische Sprecherin der SPD, Edelgard Bulmahn zum Beispiel eine Garantie der „informationellen Selbstbestimmung“. Genetische Daten müßten demnach im Patienten-Arzt-Verhältnis verbleiben und dürften nicht an Dritte weitergegeben werden.

Nach Meinung von Kritikern wird es für solch eine Regelung höchste Zeit: Das „Human Genome Projekt“, mit dem in weltweiter Kooperation alle Erbanlagen des Menschen entschlüsselt werden sollen, schreitet schneller voran, als selbst Optimisten zu hoffen wagten. Schon Ende des nächsten Jahres könnten sämtliche geschätzt 75000 Gene des Homo sapiens kartiert sein (Anmerkung: Die Schätzung war viel zu hoch; derzeit geht man von ca. 21000 menschlichen Genen aus).

Die Versuchung, aufgrund der dann vorliegenden Daten, ungeborene Kinder, Ehepaare, Arbeitssuchende und Versicherungsnehmer anhand ihrer genetischen Daten zu beurteilen, wird auch unter Wissenschaftlern als ernsthafte Bedrohung empfunden. So befanden sich der amerikanische Gentherapie-Pionier French Anderson und sein Landsmann, der Gentechnik-Kritiker Jeremy Rifkin schon vor drei Jahren in seltener Übereinstimmung mit ihrer Forderung nach umfassendem Schutz für die genetischen Daten des Einzelnen.

Fundamentale ethische und soziale Probleme sieht auch der renommierte Molekularbiologe Benno Müller-Hill auf die Gesellschaft zukommen. In einem Beitrag für die britische Fachzeitschrift „Nature“ wagte der am Institut für Genetik der Universität zu Köln arbeitende Professor kürzlich einen Ausblick auf die nächsten dreißig Jahre. Er geht davon aus, daß Fortschritte in der Erkennung genetischer Eigenschaften am Anfang stehen, die Behandlung von Krankheiten dagegen möglicherweise um Jahrzehnte hinterher hinken wird.

Müller-Hill, der seine Kollegen neben der Arbeit als Grundlagenforscher auch mit Enthüllung über medizinische Verbrechen während des Dritten Reiches konfrontierte, lehnt Gentests keinesfalls grundsätzlich ab. „Wenn eine Person einen Gentest wünscht, dann soll sie den auch haben.“ Praktische Tests seinen aber sinnvoller. So wäre ein einfacher Rechentest bei der Aufnahme an der mathematischen Fakultät einer Universität sicherlich nützlicher als eine – derzeit noch nicht machbare – Genomanalyse. „Auch wenn es um den Arbeitsschutz geht, bin ich gegen erzwungene Gentests“, sagte Müller-Hill gegenüber den VDI-Nachrichten.  Allerdings räumt der Gen-Ethiker ein, daß Menschen, die ihrem Arbeitgeber oder der Versicherung freiwillig Daten präsentieren, welche auf ein geringes Risiko hinweisen, trotzdem im Vorteil wären.

Die Zuverlässigkeit derartiger Risikoanalysen wäre ohnehin begrenzt. Denn auch wenn ein Labortechniker in zehn Jahren möglicherweise in der Lage sein sollte, mit einem einfachen Test festzustellen, ob ein Embryo bereits eine Veranlagung für Krebs, Herzkrankheiten oder Fettleibigkeit hat – Zeitpunkt und Schweregrad der Erkrankung werden sich bestimmt nicht auf einer Farbskala ablesen lassen. Ein Großteil der menschlichen Eigenschaften scheint zudem von mehreren Genen gleichzeitig beeinflußt zu sein. Das, den Bundestag beratende Büro für Technikfolgen-Abschätzung weist darauf hin, daß die Wahrscheinlichkeit des Ausbruchs einer Krankheit trotz einer „genetischen Veranlagung“ häufig nur 10 bis 20 Prozent beträgt. Die pränatale Diagnose solch schwer zu quantifizierender Eigenschaften wie Intelligenz und Toleranz muß deshalb nicht prinzipiell unmöglich sein. Derzeit werden bereits Untersuchungen an verschiedenen Hunderassen durchgeführt mit dem Ziel, den Einfluß der Erbsubstanz auf die Charaktereigenschaften der Tiere zu ermitteln.

Auch ohne derartige Forschungsprojekte werden die sozialen Spannungen zunehmen, glaubt Müller-Hill. „Man kann sich vorstellen, daß es zu Protestbewegungen derjenigen kommt, die beschlossen haben, ihre genetische Identität nicht preiszugeben. Es wird auch Fundamentalisten geben, die sich niemals testen lassen, weil sie selbst die Resultate nicht wissen wollen. All diese Gruppen werden schwere soziale Nachteile in Kauf nehmen müssen.“

Die Wende werde erst kommen, prophezeit der Genetiker, wenn die obersten Gerichte entscheiden, daß die „genetische Ungerechtigkeit“ ungeheure Ausmaße annommen hat. Dann werde man es Angestellten und Versicherungsnehmern erlauben, falsche Daten zu präsentieren, ohne sie dafür gesetzlich zu belangen. Ein ganz ähnliches Urteil fällte übrigens im Frühjahr das Bundesverfassungsgericht: Schwangere Frauen dürfen beim Einstellungsgespräch über ihren Zustand lügen, befanden Deutschlands oberste Richter.

Der „Schatten genetischer Ungerechtigkeit“ wird nach der Prognose Müller-Hills vor allem auf diejenigen fallen, die von einem der zahlreichen Leiden des zentralen Nervensystems befallen sind. Erbanlagen, die für Schizophrenie, manische Depression oder niedrige Intelligenz verantwortlich sein können, vermutet er in Europa und den Vereinigten Staaten bei mindestens zehn Prozent der Bevölkerung. „Es wird nun behauptet, diese Eigenschaften seien vererbt. Tatsächlich ist aber sowohl der Einfluß der Familie als auch die Beitrag von Umweltfaktoren noch unklar.“

Eine Öffentlichkeit, die davon überzeugt ist, daß etwa eine bestimmte Geisteskrankheit ausschließlich auf defekte Gene zurückzuführen ist, wird die Erforschung und Beseitigung möglicher anderer Ursachen daher vernachlässigen, befürchtet der Molekularbiologe. „Es ist so viel einfacher, eine Pille zu verschreiben, als die sozialen Zustände zu ändern, die für die Schwere der Symptome verantwortlich sind.“

Den Schluß, daß man auf das Wissen über „gute“ und „schlechte“ Gene verzichten könne, hält Müller-Hill aber für falsch. Die neuen Kenntnisse würden seiner Meinung nach lediglich die Realität sichtbar machen und dadurch die Ungerechtigkeit in der Welt betonen. Dadurch würden dann Gesetze erforderlich, um die genetisch Benachteiligten zu schützen. „Soziale Gerechtigkeit muß genetische Ungerechtigkeit kompensieren.“

(Originalfassung eines Artikels für die VDI-Nachrichten, erschienen am 8. Oktober 1993)

Weitere Infos / Quellen:

  1. Müller-Hill B. The shadow of genetic injustice. Nature. 1993 Apr 8;362(6420):491-2. doi: 10.1038/362491a0.
  2. Hennen, Leo; Petermann, Thomas; Schmitt, J.-J.: TA-Projekt „Genomanalyse“: Chancen und Risiken genetischer Diagnostik. Endbericht (kostenlos abrufbar hier).

Gentherapie heilt Immunschwäche

Ein Rückblick ins Jahr 1993, als das Forschungsgebiet der Gentherapie im Aufbruch war. Als gelernter Molekularbiologe war ich von den Möglichkeiten fasziniert und bin heute ein bisschen enttäuscht, dass man nicht schneller vorangekommen ist. Enttäuscht bin ich aber auch von Roland Mertelsmann, den ich damals auf mehreren Dienstreisen kennen gelernt habe, und dessen Name auf 58 Forschungsarbeiten auftaucht, die laut einem Gutachten der Deutschen Forschungsgemeinschaft „gefälscht oder fälschungsverdächtig“ sind.

Zwei kleine, gesunde Mädchen sind der bislang überzeugendste Beweis dafür, daß die Gentherapie erfolgreich sein kann, wo die klassische Medizin an ihre Grenzen stößt. Vor knapp drei Jahren erhielt Ashanti Desilva am Nationalen Gesundheitsinstitut der USA eine Infusion mit etwa einer Milliarde gentechnisch veränderter weißer Blutzellen. Die sechsjährige Ashanti, die damals an einer lebensbedrohlichen und äußerst seltenen Immunschwächekrankheit litt, führt heute ebenso ein normales Leben wie die elf Jahre alte Cynthia Cutshall, die wenige Monate später behandelt wurde.

Im Rückblick wird das historische Experiment als „Meilenstein in der Geschichte der Medizin“ gefeiert, die beteiligten Ärzte gelten als sichere Kandidaten für den Nobelpreis. Was W. French Anderson, Michael Blaese, Kenneth Culver und andere in mittlerweile gut 25 Studien an knapp 100 Patienten vorexerzierten, soll nun auch in der Bundesrepublik stattfinden:

An der Freiburger Universitätsklinik setzt Roland Mertelsmann auf die Gentherapie, die im Herbst bei 14 krebskranken Freiwilligen erprobt werden soll. Alle herkömmlichen Methoden haben bei diesen Patienten versagt – ein Grund mehr für den Mediziner, die Erwartungen nicht zu hoch zu schrauben. „Mehrere hundert Krebskranke haben bereits nachgefragt“, berichtet Mertelsmann.

Noch stehen die Erwartungen in krassem Mißverhältnis zu den eher spärlichen Erfolgsmeldungen. Andererseits gibt es eine Vielzahl von Gründen für den Optimismus der Beteiligten. Während Arzneimittel in aller Regel nur die Symptome einer Krankheit behandeln können, läßt sich das Übel durch eine Gentherapie oft unmittelbar an der Wurzel packen. Statt Chemikalien im Körper des Patienten abzulagern, liefert die Gentherapie den betroffenen Zellen die fehlenden Informationen, erklärt Detlev Ganten, Direktor des Max-Delbrück-Centrums für Molekulare Medizin in Berlin.

Im Falle von Ashanti und Cynthia war diese Information ein Gen, welches die Bauanleitung für ein einziges Eiweiß enthält. Ohne diesen Biokatalysator – die Adenosin-Deaminase – sammelten sich im Körper der Mädchen Stoffwechselprodukte an, die zu einer schleichenden Vergiftung wichtiger Abwehrzellen führten. Eine nicht abreißende Serie von Infektionen war die Folge; ohne die ständige Einnahme starker Antibiotika hätten die Kinder die Zeit bis zu dem rettenden Eingriff vermutlich nicht überlebt.

Zwar steht seit kurzem das fehlende Eiweiß auch in Medikamentenform zur Verfügung. Die Arznei hat aber gravierende Nebenwirkungen und konnte in mindestens drei Fällen das Leben der kleinen Patienten nicht mehr retten. Weltweit gibt es kaum 30 Kinder, die unter dieser Krankheit – der ADA-Defizienz – leiden. Trotzdem hatten Anderson, Blaese und Culver gute Gründe, die Erfolgschancen einer Gentherapie zunächst an diesem extrem seltenen Leiden zu prüfen.

Schon geringe Mengen des fehlenden Eiweißes reichen nämlich aus, um den Defekt zu korrigieren. Das Ärzteteam spekulierte deshalb darauf, daß es genügen würde, die fehlende Erbinformation zumindest in einen kleinen Teil der betroffenen Immunzellen hineinzuschmuggeln. Bei einer Gentherapie gegen Krebs wären dagegen praktisch alle entarteten Zellen zu zerstören. Um einen Gesunden vor einer Infektion mit dem Aidsvirus zu schützen, müßten gar 100 Prozent der gefährdeten Immunzellen erreicht werden.

Ein weiterer Faktor erleichtert die Gentherapie bei der ADA-Defizienz: Die betroffenen Immunzellen lassen sich relativ leicht aus dem Blutstrom isolieren. Im Labor können die Wissenschaftler
dann in die Trickkiste der modernen Biologie greifen und unter mehreren Varianten des Gentransfers auswählen. Die beliebtesten Helfer sind derzeit Viren, die sich im Lauf der Evolution darauf spezialisiert haben, in die verschiedensten Körperzellen einzudringen und dort ihr genetisches Material abzuladen. Was den Viren unter normalen Umständen hilft, sich auf Kosten des Infizierten zu vermehren, machen die Genforscher sich zunutze.

Längst haben sie die Viren „kastriert“, indem sie aus dem Erbmaterial Gene entfernten, die für die Vermehrung der Parasiten unverzichtbar sind. An ihre Stelle setzten die US-Wissenschaftler im Falle der kleinen Ashanti den molekularen Bauplan zur Herstellung des fehlenden Eiweißes – das ADA-Gen. Im Reagenzglas entluden die umgebauten Viren ihr Mitbringsel in den Blutzellen, die im Labor kräftig vermehrt und schließlich dem Mädchen injiziert wurden. Der Eingriff war erfolgreich und wurde inzwischen auch in Europa zwei Mal durchgeführt.

Da die genmanipulierten Blutzellen nur eine begrenzte Lebensdauer haben, mußten Ashanti und Cynthia die unangenehme Prozedur bisher etwa alle sechs bis acht Wochen erdulden. Den zwei jüngsten Patienten bleibt dies vermutlich erspart: Ein Ärzteteam der Universität San Franzisko erprobte im letzten Monat den Gentransfer auf Stammzellen, die kurz nach der Geburt aus den Nabelschnüren der beiden neugeborenen Knaben gewonnen wurden. Dies hat den Vorteil, daß alle Abkömmlinge der erfolgreich behandelten Stammzellen das gesunde Gen in sich tragen; im Idealfall wäre also die Krankheit mit einer einzigen Behandlung geheilt.

Leider ist es bei Kindern und Erwachsenen äußerst schwierig, die seltenen Stammzellen aufzuspüren und aus dem Knochenmark herauszulocken. In neueren Experimenten hat Gentherapie-Pionier Michael Blaese jedoch auch dieses Problem in Angriff genommen. Im niederländischen Rijswijk wartet außerdem Dinko Valerio auf eine Gelegenheit, seine Version des Gentransfers in Stammzellen an einem der seltenen Patienten mit ADA-Defizienz zu erproben.

Während bei dieser Immunschwächekrankheit weltweit eine Übermacht von Ärzten und Molekularbiologen einer vergleichsweise winzigen Zahl von Patienten gegenübersteht, sieht die Situation bei der Zystischen Fibrose, auch Mukoviszidose genannt, ganz anders aus. „Allein in Deutschland gibt es rund 10000 Patienten, deren mittlere Lebenserwartung beträgt 24 Jahre“, erklärte der Britische Molekularbiologe Robert Williamson.

Die Zellen der Patienten produzieren ein fehlerhaftes Eiweiß, welches bei Gesunden den Export von Natrium- und Chloridionen übernimmt. Ist der Ionentransporter defekt, bildet sich in Lunge und Magen-Darm-Trakt ein zähflüssiger Schleim. Die Kranken sind extrem anfällig für Infektionen durch Pilze, Bakterien und Viren, außerdem ist die Nahrungsverwertung gestört. Schuld ist ein schadhaftes Gen, bei dem in den meisten Fällen nur ein einziger von rund 300000 Bausteinen fehlt.

Williamson, der am Londoner St. Mary’s Hospital arbeitet, wird als einer der Ersten versuchen, diesen Erbdefekt mit den Methoden der modernen Biologie zu korrigieren. Statt wie seine amerikanischen und französischen Kollegen auf Viren zu setzen, hat Williamson seine Therapiegene in winzige Fettkügelchen – sogenannte Liposomen – verpackt. Sie sollen mit einem Aerosol bis in die feinsten Verästelungen der menschlichen Lunge gelangen und mitsamt der heilbringenden Erbsubstanz von den geschädigten Zellen der Luftwege aufgenommen werden. Die gesunden Gene werden dann ausgepackt und sind, wie Tierversuche andeuten, bis zu hundert Tagen in der Lage, die Produktion des fehlenden Eiweißes zu steuern. Danach müßte die Prozedur wiederholt werden.

Wenn der Gentransfer nur bei jeder zwanzigsten Zelle funktioniert, wäre das Problem nach Ansicht von Williamson gelöst. Ob das Versprechen gehalten werden kann, wird sich bald zeigen: Mit
umgebauten Erkältungsviren hat Ronald Crystal vom Nationalen Gesundheitsinstitut der USA vor wenigen Wochen den ersten Patienten behandelt.

Eher zögerlich geht man inzwischen auch in Deutschland ans Werk. Während sich in den USA schon 1984 die erste Ethikkommission mit Möglichkeiten und Folgen der Gentherapie auseinandersetzte, hat Gesundheitsminister Horst Seehofer erst vor kurzem eine Arbeitsgruppe zum Thema einberufen. Sie soll „überprüfen, ob der gegenwärtige rechtliche Rahmen angesichts der sich abzeichnenden stürmischen Entwicklung“ ausreicht. Die in Forscherkreisen weitverbreitete Haltung, ein Gentransfer sei im Prinzip mit einer Organtransplantation vergleichbar und bereite daher keine neuartigen Probleme, findet bei Politikern und in der deutschen Öffentlichkeit bisher wenig Zustimmung.

Neben Roland Mertelsmann, der seine Genehmigung schon in Händen hält, planen derzeit noch vier weitere deutsche Arbeitsgruppen den Einstieg in die Gentherapie. Sie werden große Mühe haben, den Hoffnungen todkranker Patienten und den kühnen Prognosen optimistischer Wissenschaftler gerecht zu werden: „In 50 Jahren werden 50 Prozent aller Behandlungen das Prinzip Gentherapie nutzen“, lautet die Vision von Detlev Ganten, Direktor des Max-Delbrück-Centrums für Molekulare Medizin in Berlin.

(Originalfassung eines Artikels für die VDI-Nachrichten, erschienen am 30. Juli 1993)

Erstmals Gentherapie gegen Hautkrebs erprobt

Zum ersten Mal haben Wissenschaftler die Methode der Gentherapie angewandt, um eine Krebserkrankung beim Menschen zu bekämpfen. Am Nationalen Gesundheitsinstitut im US-Bundesstaat Maryland wurden einer 29 Jahre alten Frau und einem 49jährigen Mann gentechnisch veränderte Blutzellen injiziert.

Man erhofft sich von dieser Behandlung Fortschritte zunächst bei der Bekämpfung des malignen Melanoms, einer bösartigen Form von Hautkrebs, die kaum zu behandeln ist und weltweit jährlich Tausende von Opfern fordert. Diese Form des Hautkrebses ist im Gegensatz zu den meisten anderen Arten nur selten heilbar.

Aufgabe der gentechnisch manipulierten Immunzellen ist es, den Bauplan für einen Eiweißstoff in die Nähe von wuchernden Krebszellen zu bringen. Dieser Eiweißstoff – es handelt sich um den Tumor Nekrose Faktor TNF – soll dann vor Ort seine Wirkung entfalten und auch sehr kleine Tochtergeschwüre (Metastasen) vernichten, die für das Skalpell des Chirurgen nicht zu erreichen sind.

Unter Leitung von Dr. Steven Rosenberg hatten die Arzte den beiden Patienten zunächst weiße Blutzellen entnommen, die sich in einem bösartigen Melanom angesammelt hatten. Diese Zellen des Immunsystems, deren Aufgabe unter anderem darin besteht, krebsartig entartete Zellen aufzuspüren und zu vernichten, sind beim malignen Melanom offensichtlich nicht in der Lage, Krebszellen wirkungsvoll zu bekämpfen. Kompliziert wird die Erkrankung vor allem dadurch, daß sich sehr schnell Tochtergeschwüre bilden, die die Funktion lebenswichtiger Organe behindern.

Um den entnommenen Zellen die Erbanlagen für TNF hinzuzufügen, benutzten Rosenberg und seine Kollegen French Anderson und Michael Blaese ein Virus als „Genfähre“. Das „Moloney-Mäuse-Leukämie-Virus“, welches nach Überzeugung der Forscher für den Patienten völlig ungefährlich ist, wurde zuvor künstlich geschwächt, um die Sicherheit noch weiter zu erhöhen.

Erfolg dieser Maßnahme: Die Viren können zwar das gewünschte Gen in die weißen Blutzellen des Patienten einschmuggeln; sie können sich im menschlichen Körper aber nicht mehr vermehren. Die veränderten Immunzellen vermehrten die Forscher dann massenhaft in Zellkulturen – ein Verfahren, das mehrere Wochen in Anspruch nimmt. In einem zweiten Schritt wurden die Zellen zu Milliarden in den Blutkreislauf der Patienten zurückgegeben. „Wir hoffen, die Tür zu einer neuen Art der Krebsbekämpfung zu öffnen, aber das Verfahren ist noch in einem sehr frühen Entwicklungsstadium“, dämpfte Rosenberg allzu hohe Erwartungen.

In dieser Studie wird vor allem die Sicherheit des Experimentes überprüft. Falls sich keine unvorhergesehenen Komplikationen ergeben, wird der Versuch auf zunächst 50 Patienten erweitert werden. Damit erreicht eine bislang 16jährige Forschungstätigkeit Rosenbergs ihren vorläufigen Höhepunkt, die darauf abzielt, die menschlichen Erbinformationen gezielt zur Krebsbekämpfung einzusetzen.

Vorausgegangen waren dem historischen Experiment ausgiebige Untersuchungen über den Verbleib von gentechnisch veränderten Zellen im menschlichen Körper. Dazu war den weißen Blutzellen bereits vor einem Jahr ein sogenanntes Marker-Gen eingepflanzt worden, mit dem sich die manipulierten Zellen von den unveränderten des Patienten unterscheiden ließen.

Der erste Versuch überhaupt, eine menschliche Krankheit mit Hilfe der Gentherapie zu heilen, wurde im September des vergangenen Jahres begonnen. Ein vier Jahre altes Mädchen, das unter einer äußerst seltenen Immunschwächekrankheit litt, zeigt nach vorläufigen Verlautbarungen bereits eine deutliche Besserung seines Gesundheitszustandes.

Das Eiweiß TNF, das jetzt in der Gentherapie erstmalig angewendet wurde, hatte schon vor Jahren in Zellkulturen und im Tierversuch seine Fähigkeit bewiesen, Tumoren zu bekämpfen und war eine der ersten Substanzen auf der langen Liste gentechnisch hergestellter Wirkstoffe. Auch in Deutschland darf diese Substanz seit kurzem mit Hilfe von genmanipulierten Bakterien produziert werden.

(erschienen in „DIE WELT“ am 31. Januar 1991)  

Was wurde daraus? Fast 30 Jahre nach Erscheinen dieses Artikels finde ich bei einer Literatursuche auf PubMed annähernd 20.000 Publikationen zum Thema. Mehr als 2000 dieser Artikel erwähnen klinische Studien, jedoch ist die „Impfung gegen Hautkrebs“ immer noch nicht in der Praxis angekommen. Mindestens zwei derartige Studien laufen derzeit auch in Deutschland, wie ich einem Bericht der Melanoma Research Alliance entnehme. Nach zahlreichen Enttäuschung auf diesem Gebiet halte ich mich mit der Berichterstattung zurück bis die Daten zu einer größeren Zahl von Patienten in einer renommierten Fachzeitschrift erscheinen.

Nobelpreis belohnt zwei Pioniere der Organtransplantation

Dem Fortschritt der Transplantationsmedizin verdanken tausende Patienten ein längeres oder lebenswerteres Dasein. Nierenkranke Menschen wurden von der Blutwäsche befreit; Patienten mit schweren Erkrankungen von Herz und Leber überlebten. Diese Entwicklung hat sich innerhalb der letzten 40 Jahre vollzogen. Das Nobel-Komitee hat jetzt zwei Forscher gewürdigt, die schon vor Jahrzehnten den Grundstein für den außerordentlichen Erfolg der Transplantations-Medizin gelegt haben: Der diesjährige Medizin-Nobelpreis wurde gestern den beiden amerikanischen Wissenschaftlern Joseph E. Murray und E. Donnall Thomas zuerkannt.

Copyright © The Nobel Foundation

Die Transplantations-Medizin hat in den letzten Jahrzehnten rasante Fortschritte gemacht: Waren vor 40 Jahren die Verpflanzung einer Niere oder gar von Herz oder Leber noch medizinische Utopie, so ist sie heute bereits zum Routineeingriff geworden. An diesem Fortschritt haben zahlreiche Wissenschaftler und Ärzte mitgewirkt.

Das schwedische Nobel-Komitee hat sich nun entschlossen, den diesjährigen Medizin-Nobelpreis an zwei Pioniere der Transplantationsmedizin zu vergeben: die amerikanischen Wissenschaftler Joseph E. Murray und E. Donnall Thomas. Damit ist der Medizin-Nobelpreis erstmals seit längerer Zeit wieder an zwei Forscher vergeben worden, die – als Chirurg und als Hämatologe – auch in der klinischen Medizin tätig waren. In den letzten Jahren wurden fast ausschließlich Entdeckungen von Grundlagenforschern gewürdigt, die mit Hilfe molekularbiologischer Methoden im Labor gemacht worden waren.

Wie das Karolinska-Institut in Stockholm gestern bekanntgab, wurden die beiden Forscher dafür ausgezeichnet, dass sie die Transplantation von Zellen und Organen als Behandlungsmethode eingeführt haben. Nach Ansicht des Nobel-Komitees waren die Entdeckungen der beiden Wissenschaftler „ausschlaggebend für zehntausende schwerkranker Menschen, die durch Transplantation entweder völlig geheilt wurden oder zu einem verhältnismäßig normalen Leben zurückkehren konnten, wo andere Methoden erfolglos waren“. Die Nobelpreise sind dieses Jahr mit jeweils 1,08 Millionen Mark dotiert.

Der einundsiebzigjährige Murray war bis zu seiner Pensionierung im Jahre 1985 am Medizinischen Zentrum für Kinderheilkunde in Boston tätig. Am 23. Dezember 1954 gelang es ihm erstmals, einem eineiigen Zwilling die Niere seines Zwillingsbruders zu übertragen. Die Transplantation war erfolgreich, da das genetisch identische Organ von der Immunabwehr des Empfängers nicht abgestoßen wurde.

Die dramatische Operation hatte damals großes Aufsehen erregt: Der 22jährige Patient litt nach einer Scharlach-Erkrankung an chronischem Nierenversagen, als sich das Ärzteteam um Murray entschloss, die erste Nierentransplantation zu wagen. Sechs Monate nach der Transplantation wurde der Patient nach Hause entlassen. Er begann bald wieder zu arbeiten und heiratete die Krankenschwester, die ihn gepflegt hatte.

Die Idee, Organe von einem Menschen auf den anderen zu übertragen, hatte man bereits in der Antike, erfolglose Transplantationsversuche wurden schon um die Jahrhundertwende unternommen. Alexis Carrel, Nobelpreisträger von 1912, postulierte eine „biologische Kraft“, welche die Organverpflanzung aussichtslos mache.

Nachdem Murray diese Theorie schon für genetisch identische Organe widerlegt hatte, wurde im April 1958 eine Methode bekannt, die zu einer wirksamen Unterdrückung der Abwehrkräfte führte und damit die Verpflanzung nicht identischer Organe in Aussicht stellte: Die Ganzkörperbestrahlung mit anschließender Injektion von Knochenmarkszellen, die bei dieser Bestrahlung zerstört wurden. Später kamen Medikamente wie 6-Mercaptopurin und Azathioprin und schließlich Cyclosporin, die die Immunabwehr unterdrückten. Mit ihrer Hilfe gelang es, auch genetisch unterschiedliche Nieren von Verstorbenen zu verpflanzen.

In der Bundesrepublik war es erst im Februar 1968 so weit: Die erste Patientin konnte die Heidelberger Rudolf-Krehl-Klinik wenige Wochen nach der Operation verlassen, nachdem ihr erstmals erfolgreich die Niere eines lebenden Spenders übertragen worden war. Die Transplantation von Nieren erwies sich als Organverpflanzung mit hoher Erfolgschance; sie ist, vor allem was die Lebensqualität anbelangt, der Blutwäsche, der sich die Nierenkranken unterziehen müssen, deutlich überlegen.

Mit der erfolgreichen Nierentransplantation war auch das Feld geöffnet für die Übertragung weiterer Organe wie Herz, Leber und Bauchspeicheldrüse und schließlich auch von Lungenflügeln. Das Hauptproblem bei der Verpflanzung von Organen besteht auch heute noch in den Abstoßungsreaktionen des Empfängers.

Mittlerweile weiß man auch mehr über die „biologische Kraft“ des Alexis Carrel. Die Zellen des menschlichen Körpers tragen nämlich auf ihrer Oberfläche Eiweißstrukturen – die sogenannten MHC-Antigene – die in hunderten verschiedener Varianten vorkommen. Das Immunsystem „lernt“ schon während seiner Entstehung, eigene von fremden Strukturen zu unterscheiden. Diese Fähigkeit unserer Abwehrzellen kann aber zum Verhängnis werden, wenn lebenswichtige Spenderorgane nicht toleriert werden, weil die Oberflächenstruktur der empfangenen Zellen sie als „feindlich“ ausweist.

Um die Immunabwehr gegen das fremde Organ zu unterdrücken, nutzten Murray und Thomas zwei medizinische Erkenntnisse: ionisierende Strahlung sowie Medikamente, die das Wachstum der Immunzellen hemmen, sind in der Lage, die Abstoßungsreaktionen des Körpers gegen fremdes Gewebe zu vermindern. Murray kombinierte eine Bestrahlung des ganzen Körpers mit der Einnahme des zellhemmenden Medikaments Azathioprin.

Thomas benutzte das Medikament Methotrexat, um auch die sogenannte Graft-versus-Host-Reaktion zu dämpfen. Bei dieser „GVH“-Reaktion sind es die Zellen des Spenders, welche die Gewebe des Empfängers angreifen. Im Transplantat finden sich nämlich immer eine Anzahl von T-Zellen, die in der fremden Umgebung des Empfängers großes Unheil anrichten können.

Thomas ist heute stellvertretender Direktor der Forschungsabteilung des Fred Hutchinson Krebsforschungszentrums in Seattle und hat auch in den letzten Jahren noch mit einer Vielzahl von Forschungsarbeiten geglänzt, die in verschiedenen Fachzeitschriften veröffentlicht wurden. Der 70-jährige beschäftigte sich auch in letzter Zeit vorwiegend mit der Transplantation von Knochenmarkzellen.

Die Übertragung dieser blutbildenden Zellen kann Blutkrebs (Leukämie), schwere Erbkrankheiten oder Störungen des Immunsystems heilen, erklärte das 50köpfige Nobelkomitee gestern in der Begründung der Preisverleihung.

Derzeit werden in den Vereinigten Staaten die ersten Versuche unternommen, gentechnisch veränderte Blutzellen zu verabreichen. An den National Institutes of Health in Bethesda setzen French Anderson, Michael Blaese und Kenneth Culver die Arbeit von Murray und Thomas fort. Im September behandelten sie ein vierjähriges Mädchen mit einer äußerst seltenen Erbkrankheit (ADA), der veränderte T-Zellen injiziert wurden. Idealerweise würde man statt T-Zellen Knochenmarkszellen benutzen, die sich im Mark des Empfängers etablieren und neue Blutzellen produzieren.

Auch diese Erkenntnis verdankt man den Arbeiten von Thomas. Darüber hinaus zeigte er, dass sich die Knochenmarkstransplantationen auch ohne chirurgischen Eingriff vornehmen lassen. Vor den entscheidenden Arbeiten von Thomas und seinen Mitarbeitern hatte man versucht, das fremde Knochenmark direkt in die Knochenhöhle einzuspritzen. Seine Technik, die heute in allen Behandlungs-Zentren angewendet wird, erwies sich als überraschend einfach: Das Knochenmark wird dazu meist aus dem Beckenknochen des Spenders gewonnen, ohne dass er stark beeinträchtigt wird oder Nebenwirkungen zu erleiden hat. Die entnommene Kochenmarkssuspension wird dann dem Empfänger in die Vene injiziert.

Die wichtigen Stammzellen aus denen alle Blutzellen entstehen, finden – dies konnte Thomas zeigen – selbständig ihren Weg in das Knochenmark. Schon nach zwei bis drei Wochen werden die ersten Blutzellen gebildet. Das kranke Knochenmark wird zuvor durch Ganzkörperbestrahlung und Medikamente abgetötet.

Thomas, der verheiratet ist und drei Kinder hat, wurde am 15. März 1920 in Mart (Texas) geboren. Murray wurde am 1. April 1919 in Milford (Massachusetts) geboren. Der Wissenschaftler, der als Hobbys Badminton und Tennis angibt, ist verheiratet und hat sechs Kinder.

(geschrieben mit meiner damaligen Kollegin Dr. Annette Tuffs, erschienen in der WELT am 9. Oktober 1990. Letzte Aktualisierung 14. April 2017)

Was ist daraus geworden? Beide Mediziner sind inzwischen verstorben, doch ihr Erbe wirkt fort. So wurden in 2014 – dem letzten Jahr, für das ich Zahlen finden konnte – weltweit fast 120000 Organe verpflanzt. Darunter waren ca. 80000 Nieren, 26000 Lebern, 6500 Herzen, 4700 Lungen und 2300 Bauchspeicheldrüsen. Der Bedarf ist allerdings nach Schätzungen noch immer etwa zehn mal so hoch. In Deutschland wird im internationalen Vergleich eher wenig transplantiert, obwohl mittlerweile jeder dritte einen Organspendeausweis trägt. Die Zahlen gehen seit 2010 zurück. Schuld sei die mangelnde Meldebereitschaft vieler Krankenhäuser, sagte Wolfgang Fleig, der Medizinische Vorstand des Universitätsklinikums in Leipzig, gegenüber dem Nachrichtenmagazin Focus.

Künstliche Leber im Tierversuch erfolgreich

Man nehme: einige Streifen feinfaseriges Gore-Tex („Engelshaar“), etwas Kollagen und dazu einen Schuss Wachstumsfaktor und ein paar Leberzellen. Nach sorgfältigem Mischen dieser „Zutaten“ erhält man ein Kunstorgan, das in der Lage ist, die Funktion einer Leber zu übernehmen. Was wie die Phantasie eines Science-fiction-Autors anmutet, wurde im Tierversuch bereits erfolgreich erprobt.

Das „Neo-Organ“, entwickelt von den amerikanischen Forschern John Thompson und Thomas Maciag, entsprang dem Versuch, angeborene Mangelkrankheiten durch die Gabe gesunder Zellen zu beheben. Dazu waren zwei Hürden zu nehmen: Ohne ausreichende Nährstoff-Versorgung können nur wenige Zellen überleben. Erst wenn über Blutgefäße Sauerstoff und Zucker geliefert werden, kann sich das Kunstorgan entwickeln.

Thompson und Maciag lösten beide Probleme, indem sie fein gesponnene Gore-Tex-Fäden mit dem Eiweiß Kollagen überzogen und dann in einer Nährlösung bebrüteten, die das biologische Signalmolekül HBGF enthielt. Die schwammartigen Gebilde wurden dann in die Bauchhöhle von Ratten eingepflanzt und zunächst sich selbst überlassen.

Als die Forscher vier Wochen nach der Operation die Bauchhöhle wieder öffneten, trauten sie kaum ihren Augen: Offensichtlich von HBGF angelockt, hatten sich Blutgefäße ausgebildet, die das Kunstorgan mit dem umliegenden Gewebe verbanden. Unter dem Mikroskop konnten die Wissenschaftler verschiedenste Zelltypen entdecken, die sich um die Gore-Tex-Fäden gruppiert hatten – Muskelgewebe und sogar Nervenzellen haben sie gefunden.

In einem zweiten Experiment wurde versucht, mit Hilfe der entstandenen Neo-Organe eine Erbkrankheit zu korrigieren. Die Forscher nahmen Ratten, deren Leber nicht mehr den Gallenfarbstoff Bilirubin entgiften konnte – die Tiere litten also an Gelbsucht. Die Forscher besiedelten die Neo-Organe mit gesunden Leberzellen und schon am nächsten Tag sank der Bilirubingehalt des Blutes deutlich ab. Die transplantierten Zellen hatten in dem Neo-Organ ein neues Zuhause gefunden und begannen sofort mit der Entgiftungsarbeit. Nach etwa drei Wochen hatte die künstliche Leber ihre Arbeit voll aufgenommen und auch sechs Monate später funktionierte das Neo-Organ noch einwandfrei.

Auch beim Menschen sind eine Reihe von Krankheitsbildern bekannt, die auf einen gestörten Billrubinstoffwechsel zurückgehen. Thompson und Maciag sehen hier eine Vielzahl von Anwendungen. Auch die Milz und Herzkranzgefäße haben die Wissenschaftler im Visier. Thompson ist besonders von der Aussicht begeistert, dass die Kunstorgane auch Nervenzellen bilden könnten und denkt dabei an die Opfer der Alzheimerschen Krankheit und anderer Störungen des Nervensystems.

Die Befürworter einer Gentherapie am Menschen sind ebenfalls hellhörig geworden. Sie sehen in den Neo-Organen ein geeignetes Vehikel, um gentechnisch veränderte Zellen in den menschlichen Organismus einzuschleusen. Dort könnten sie dann vor Ort die verschiedensten Wirkstoffe produzieren und so als Medikamentendepot dienen.

Gegen Herz- und Kreislauferkrankungen werden in den Laboratorien bereits neue Waffen geschmiedet. Genetisch programmierte Endothelzellen könnten die verschiedenen Wirkstoffe direkt in die Blutbahn abgeben. James Wilson von der Universität Michigan hat die ersten Versuche an Hunden bereits erfolgreich abgeschlossen. Während Wilson künstliche Arterien mit seinen Zellen besiedelte, gelang es seinem Kollegen Gary Nabel, die beschädigten Blutbahnen einer Schweinerasse neu auszukleiden. Bisher haben beide Arbeitsgruppen nur einen „Genmarker“ benutzt, der es ihnen erlaubte, den Weg der implantierten Zellen zu verfolgen.

Schon bald aber soll das Gen für TPA zum Einsatz kommen, wodurch Blutgerinnsel aufgelöst oder verhindert werden könnten. Dazu müsste die – bekannte – Erbinformation für die Herstellung von TPA in die Zelle eingeschmuggelt werden. Ein „genetischer Schalter“ würde dafür sorgen, daß die Produktion dieser lebenswichtigen Substanz durch den behandelnden Arzt reguliert werden könnte. Mit der gleichen Methode ließe sich möglicherweise der Arterienverkalkung beikommen. Bluter und Zuckerkranke sind weitere Patientengruppen die für eine derartige Therapie in Frage kämen.

Auch bei der Behandlung von Aids könnten die neuen Erkenntnisse zu Fortschritten führen. French Anderson vom Nationalen Gesundheitsinstitut in Maryland hat sich zusammen mit Robert Gallo vom Nationalen Krebsinstitut, bereits eine Strategie überlegt, wie das Aids-Virus (HIV) zu attackieren sei. Sie wollen ein Eiweiß namens CD4 nutzen, das theoretisch in der Lage ist, dem Virus den Zugang zu seinen Wirtszellen zu versperren, CD4 befindet sich zurzeit in der ersten Phase der klinischen Versuche, in einem Stadium also, in dem das Eiweiß an einer kleinen Zahl von Patienten auf seine Verträglichkeit untersucht wird.

Allerdings werden die Moleküle, die mehrmals täglich gespritzt werden müssen, im Blut der Patienten innerhalb kürzester Zeit wieder abgebaut. Andersons Team hat daher den molekularen Bauplan für CD4 in weiße Blutkörperchen (Lymphozyten) eingebaut. Wenn es den Forschern gelingt, diese Lymphozyten zur Produktion größerer Mengen an CD4 zu „überreden“, sollen die Zellen in die Bauchhöhle von Aids-Patienten implantiert werden. Im Inneren eines Neo-Organs könnten die manipulierten Lymphozyten dann das Aids-Virus über längere Zeiträume hinweg in Schach halten.

(leicht gekürzt erschienen in der WELT vom 23. Juni 1990)

Was ist daraus geworden? „Künstliche Organe“ im Sinne dieses Artikels gibt es für den routinemäßigen Einsatz in der Praxis noch immer nicht. Am nähesten ´dran scheint die Forschung mit einer Bauspeicheldrüse aus der Retorte für Typ-1-Diabetiker. Zur Entgiftung außerhalb des Körpers wurde aber das technische System MARS entwickelt und zugelassen bei chronischem Leberversagen von Neugeborenen, Kleinkindern und Kindern, die auf ein Spenderorgan warten.