Zum Hauptinhalt springen

Gentherapie heilt Immunschwäche

Ein Rückblick ins Jahr 1993, als das Forschungsgebiet der Gentherapie im Aufbruch war. Als gelernter Molekularbiologe war ich von den Möglichkeiten fasziniert und bin heute ein bisschen enttäuscht, dass man nicht schneller vorangekommen ist. Enttäuscht bin ich aber auch von Roland Mertelsmann, den ich damals auf mehreren Dienstreisen kennen gelernt habe, und dessen Name auf 58 Forschungsarbeiten auftaucht, die laut einem Gutachten der Deutschen Forschungsgemeinschaft „gefälscht oder fälschungsverdächtig“ sind.

Zwei kleine, gesunde Mädchen sind der bislang überzeugendste Beweis dafür, daß die Gentherapie erfolgreich sein kann, wo die klassische Medizin an ihre Grenzen stößt. Vor knapp drei Jahren erhielt Ashanti Desilva am Nationalen Gesundheitsinstitut der USA eine Infusion mit etwa einer Milliarde gentechnisch veränderter weißer Blutzellen. Die sechsjährige Ashanti, die damals an einer lebensbedrohlichen und äußerst seltenen Immunschwächekrankheit litt, führt heute ebenso ein normales Leben wie die elf Jahre alte Cynthia Cutshall, die wenige Monate später behandelt wurde.

Im Rückblick wird das historische Experiment als „Meilenstein in der Geschichte der Medizin“ gefeiert, die beteiligten Ärzte gelten als sichere Kandidaten für den Nobelpreis. Was W. French Anderson, Michael Blaese, Kenneth Culver und andere in mittlerweile gut 25 Studien an knapp 100 Patienten vorexerzierten, soll nun auch in der Bundesrepublik stattfinden:

An der Freiburger Universitätsklinik setzt Roland Mertelsmann auf die Gentherapie, die im Herbst bei 14 krebskranken Freiwilligen erprobt werden soll. Alle herkömmlichen Methoden haben bei diesen Patienten versagt – ein Grund mehr für den Mediziner, die Erwartungen nicht zu hoch zu schrauben. „Mehrere hundert Krebskranke haben bereits nachgefragt“, berichtet Mertelsmann.

Noch stehen die Erwartungen in krassem Mißverhältnis zu den eher spärlichen Erfolgsmeldungen. Andererseits gibt es eine Vielzahl von Gründen für den Optimismus der Beteiligten. Während Arzneimittel in aller Regel nur die Symptome einer Krankheit behandeln können, läßt sich das Übel durch eine Gentherapie oft unmittelbar an der Wurzel packen. Statt Chemikalien im Körper des Patienten abzulagern, liefert die Gentherapie den betroffenen Zellen die fehlenden Informationen, erklärt Detlev Ganten, Direktor des Max-Delbrück-Centrums für Molekulare Medizin in Berlin.

Im Falle von Ashanti und Cynthia war diese Information ein Gen, welches die Bauanleitung für ein einziges Eiweiß enthält. Ohne diesen Biokatalysator – die Adenosin-Deaminase – sammelten sich im Körper der Mädchen Stoffwechselprodukte an, die zu einer schleichenden Vergiftung wichtiger Abwehrzellen führten. Eine nicht abreißende Serie von Infektionen war die Folge; ohne die ständige Einnahme starker Antibiotika hätten die Kinder die Zeit bis zu dem rettenden Eingriff vermutlich nicht überlebt.

Zwar steht seit kurzem das fehlende Eiweiß auch in Medikamentenform zur Verfügung. Die Arznei hat aber gravierende Nebenwirkungen und konnte in mindestens drei Fällen das Leben der kleinen Patienten nicht mehr retten. Weltweit gibt es kaum 30 Kinder, die unter dieser Krankheit – der ADA-Defizienz – leiden. Trotzdem hatten Anderson, Blaese und Culver gute Gründe, die Erfolgschancen einer Gentherapie zunächst an diesem extrem seltenen Leiden zu prüfen.

Schon geringe Mengen des fehlenden Eiweißes reichen nämlich aus, um den Defekt zu korrigieren. Das Ärzteteam spekulierte deshalb darauf, daß es genügen würde, die fehlende Erbinformation zumindest in einen kleinen Teil der betroffenen Immunzellen hineinzuschmuggeln. Bei einer Gentherapie gegen Krebs wären dagegen praktisch alle entarteten Zellen zu zerstören. Um einen Gesunden vor einer Infektion mit dem Aidsvirus zu schützen, müßten gar 100 Prozent der gefährdeten Immunzellen erreicht werden.

Ein weiterer Faktor erleichtert die Gentherapie bei der ADA-Defizienz: Die betroffenen Immunzellen lassen sich relativ leicht aus dem Blutstrom isolieren. Im Labor können die Wissenschaftler
dann in die Trickkiste der modernen Biologie greifen und unter mehreren Varianten des Gentransfers auswählen. Die beliebtesten Helfer sind derzeit Viren, die sich im Lauf der Evolution darauf spezialisiert haben, in die verschiedensten Körperzellen einzudringen und dort ihr genetisches Material abzuladen. Was den Viren unter normalen Umständen hilft, sich auf Kosten des Infizierten zu vermehren, machen die Genforscher sich zunutze.

Längst haben sie die Viren „kastriert“, indem sie aus dem Erbmaterial Gene entfernten, die für die Vermehrung der Parasiten unverzichtbar sind. An ihre Stelle setzten die US-Wissenschaftler im Falle der kleinen Ashanti den molekularen Bauplan zur Herstellung des fehlenden Eiweißes – das ADA-Gen. Im Reagenzglas entluden die umgebauten Viren ihr Mitbringsel in den Blutzellen, die im Labor kräftig vermehrt und schließlich dem Mädchen injiziert wurden. Der Eingriff war erfolgreich und wurde inzwischen auch in Europa zwei Mal durchgeführt.

Da die genmanipulierten Blutzellen nur eine begrenzte Lebensdauer haben, mußten Ashanti und Cynthia die unangenehme Prozedur bisher etwa alle sechs bis acht Wochen erdulden. Den zwei jüngsten Patienten bleibt dies vermutlich erspart: Ein Ärzteteam der Universität San Franzisko erprobte im letzten Monat den Gentransfer auf Stammzellen, die kurz nach der Geburt aus den Nabelschnüren der beiden neugeborenen Knaben gewonnen wurden. Dies hat den Vorteil, daß alle Abkömmlinge der erfolgreich behandelten Stammzellen das gesunde Gen in sich tragen; im Idealfall wäre also die Krankheit mit einer einzigen Behandlung geheilt.

Leider ist es bei Kindern und Erwachsenen äußerst schwierig, die seltenen Stammzellen aufzuspüren und aus dem Knochenmark herauszulocken. In neueren Experimenten hat Gentherapie-Pionier Michael Blaese jedoch auch dieses Problem in Angriff genommen. Im niederländischen Rijswijk wartet außerdem Dinko Valerio auf eine Gelegenheit, seine Version des Gentransfers in Stammzellen an einem der seltenen Patienten mit ADA-Defizienz zu erproben.

Während bei dieser Immunschwächekrankheit weltweit eine Übermacht von Ärzten und Molekularbiologen einer vergleichsweise winzigen Zahl von Patienten gegenübersteht, sieht die Situation bei der Zystischen Fibrose, auch Mukoviszidose genannt, ganz anders aus. „Allein in Deutschland gibt es rund 10000 Patienten, deren mittlere Lebenserwartung beträgt 24 Jahre“, erklärte der Britische Molekularbiologe Robert Williamson.

Die Zellen der Patienten produzieren ein fehlerhaftes Eiweiß, welches bei Gesunden den Export von Natrium- und Chloridionen übernimmt. Ist der Ionentransporter defekt, bildet sich in Lunge und Magen-Darm-Trakt ein zähflüssiger Schleim. Die Kranken sind extrem anfällig für Infektionen durch Pilze, Bakterien und Viren, außerdem ist die Nahrungsverwertung gestört. Schuld ist ein schadhaftes Gen, bei dem in den meisten Fällen nur ein einziger von rund 300000 Bausteinen fehlt.

Williamson, der am Londoner St. Mary’s Hospital arbeitet, wird als einer der Ersten versuchen, diesen Erbdefekt mit den Methoden der modernen Biologie zu korrigieren. Statt wie seine amerikanischen und französischen Kollegen auf Viren zu setzen, hat Williamson seine Therapiegene in winzige Fettkügelchen – sogenannte Liposomen – verpackt. Sie sollen mit einem Aerosol bis in die feinsten Verästelungen der menschlichen Lunge gelangen und mitsamt der heilbringenden Erbsubstanz von den geschädigten Zellen der Luftwege aufgenommen werden. Die gesunden Gene werden dann ausgepackt und sind, wie Tierversuche andeuten, bis zu hundert Tagen in der Lage, die Produktion des fehlenden Eiweißes zu steuern. Danach müßte die Prozedur wiederholt werden.

Wenn der Gentransfer nur bei jeder zwanzigsten Zelle funktioniert, wäre das Problem nach Ansicht von Williamson gelöst. Ob das Versprechen gehalten werden kann, wird sich bald zeigen: Mit
umgebauten Erkältungsviren hat Ronald Crystal vom Nationalen Gesundheitsinstitut der USA vor wenigen Wochen den ersten Patienten behandelt.

Eher zögerlich geht man inzwischen auch in Deutschland ans Werk. Während sich in den USA schon 1984 die erste Ethikkommission mit Möglichkeiten und Folgen der Gentherapie auseinandersetzte, hat Gesundheitsminister Horst Seehofer erst vor kurzem eine Arbeitsgruppe zum Thema einberufen. Sie soll „überprüfen, ob der gegenwärtige rechtliche Rahmen angesichts der sich abzeichnenden stürmischen Entwicklung“ ausreicht. Die in Forscherkreisen weitverbreitete Haltung, ein Gentransfer sei im Prinzip mit einer Organtransplantation vergleichbar und bereite daher keine neuartigen Probleme, findet bei Politikern und in der deutschen Öffentlichkeit bisher wenig Zustimmung.

Neben Roland Mertelsmann, der seine Genehmigung schon in Händen hält, planen derzeit noch vier weitere deutsche Arbeitsgruppen den Einstieg in die Gentherapie. Sie werden große Mühe haben, den Hoffnungen todkranker Patienten und den kühnen Prognosen optimistischer Wissenschaftler gerecht zu werden: „In 50 Jahren werden 50 Prozent aller Behandlungen das Prinzip Gentherapie nutzen“, lautet die Vision von Detlev Ganten, Direktor des Max-Delbrück-Centrums für Molekulare Medizin in Berlin.

(Originalfassung eines Artikels für die VDI-Nachrichten, erschienen am 30. Juli 1993)

Gentherapie gegen AIDS?

Ausgerechnet mit Hilfe von Aids-Viren, die im Labor ihrer todbringenden Eigenschaften beraubt wurden, wollen amerikanische Wissenschaftler einen neuen Versuch starten, der noch immer unheilbaren Immunschwächekrankheit beizukommen. Die brisante Idee, die selbst unter Experten Stirnrunzeln hervorruft, entpuppt sich erst bei näherer Betrachtung als wohldurchdachte Strategie, das Aidsvirus mit den eigenen Waffen zu schlagen.

Um nämlich diejenigen Abwehrzellen zu schützen, von deren Überleben das Schicksal aller Infizierten abhängt, müssen die Forscher erst einmal an die richtigen Blutzellen herankommen. Warum also nicht das Aidsvirus selbst benutzen, um schützende Gene in die gefährdeten Makrophagen und T-4-Helferzellen zu transportieren?

Wenn man zuvor die gefährlichen Erbanlagen des Erregers mit molekularbiologischen Methoden herausschneiden und durch nützliche Gene ersetzen würde, erhielte man ein ideales Vehikel für die Gentherapie. Dieser Ansicht ist zumindest Joseph Sodroski vom Dana-Farber Cancer Institute, der kürzlich auf einem Symposium des renommierten Cold Spring Harbor Labors bei New York versuchte, die Idee seinen Kollegen schmackhaft zu machen.

„Ich glaube nicht, daß die Öffentlichkeit bereit ist, einer Gentherapie mit modifizierten Aidsviren zuzustimmen“, konterte dagegen der Brite Robert Williamson, seines Zeichens ebenfalls Gentherapeut in spe. Viren – ob HIV oder Andere – haben trotzdem eine gute Chance, ihren schlechten Ruf als Krankheitserreger wieder wettzumachen. Schon lange werden harmlose Varianten von Pocken- oder Polioviren bei Schutzimpfungen eingesetzt. Für die Gentherapie interessant sind dagegen die mehr oder weniger harmlosen, im Labor quasi kastrierten, Retro- und Adenoviren. „Sie funktionieren wie kleine Lastwagen, die sich selbst beladen, ihre Fracht an den Zielort bringen und dort auch noch auspacken“, begeistert sich Williamson.

Ähnlich argumentiert auch Karin Mölling vom Berliner Max-Planck-Institut für molekulare Genetik: „Wie lernt man fliegen? Man macht es den Vögeln nach!“ In ähnlicher Weise haben Biologen und Mediziner durch genaue Beobachtung von Viren einiges darüber gelernt, wie man ein bestimmtes Gen in ausgewählte Zellen hineinschmuggeln kann. Auch bei der Frage, welche Gene für eine Blockade des Immunschwächevirus in Frage kommen, tappt man nicht länger im Dunkeln.

Im Mittelpunkt des Interesses stehen derzeit die sogenannten frühen regulatorischen Gene des Erregers, TAT und REV. TAT, das Transaktivator Gen, gilt als Hauptschalter, dessen Stellung darüber entscheidet, ob die komplette virale Erbinformation kopiert wird oder nicht. Mit defekten TAT-Genen ist es Clay Smith vom Memorial Sloan-Kettering Cancer Center in New York bereits gelungen, die Bildung neuer Viren in Zellkulturen drastisch zu reduzieren.

Der Erfolg war allerdings nicht von langer Dauer; wie so oft bildeten sich innerhalb kurzer Zeit neue Virusvarianten, die sich auch in Gegenwart defekter TAT-Gene ungestört vermehren können. Andere Arbeitsgruppen werden nun zeigen müssen, ob man mit REV mehr Glück hat. Das REV-Gen dient als molekulare Blaupause zur Herstellung eines Eiweißes – Rev – das vermutlich für den Transport des viralen Erbfadens aus dem Zellkern in das umgebende Zytoplasma zuständig ist. Die dort gelegenen Eiweißfabriken der befallenen Zelle befolgen dann artig die Befehle zur Produktion neuer Virusbestandteile – der Erreger kann sich weiter ausbreiten.

Dem will Ernst Böhnlein am Sandoz Research Institute in Wien einen Riegel vorschieben. Auch Böhnlein bedient sich dazu eines Retrovirus für den Gentransfer in menschliche Zellen. Wie erhofft blockiert ein Überschuß defekter Rev-Moleküle die Vermehrung des Aidsvirus – jedenfalls im Labor.

Mit einer Blockade der Virusvermehrung geben sich manche Arbeitsgruppen jedoch nicht zufrieden. Sie wollen mehr erreichen als „nur“ den Stillstand der Infektion. Ziel ist es, die befallenen Zellen mitsamt den darin versteckten Aidsviren abzutöten. Dabei kommen sogenannte „Selbstmord-Gene“ zum Einsatz: Wie Tretminen sollen sie in den gefährdeten Abwehrzellen auf die Invasoren warten, um beim ersten Kontakt eine tödliche Kettenreaktion auszulösen.

Dazu haben Richard Morgan und seine Mitarbeiter am Nationalen Gesundheitsinstitut der Vereinigten Staaten die Erbinformation zur Herstellung des Diphterie-Giftes mit dem Abschnitt eines Virusgens verbunden. Sobald das Virusteil mit den Eiweißen Rev oder Tat in Berührung kommt, produziert die Zelle das Diphterie-Toxin, von dem ein einziges Molekül zur Selbstzerstörung ausreicht. Das gleiche Prinzip mit einem anderen Gift wird derzeit auch bei der Therapie bestimmter Hirntumoren erprobt. „Wunderbar, was mit solchen Suizid-Genen alles gemacht werden kann“, freut sich Karin Mölling.

Ein immer wieder vorgebrachter Einwand gegen die Gentherapie mit Retroviren lautet, die Gentaxis könnten beim „Einparken“ gesunde Gene beschädigen und dadurch langfristig die Entstehung von Tumoren begünstigen. Für einen todkranken Patienten jedoch sei dieses theoretische Risiko kein Argument, widerspricht Frau Mölling, die ihre eigenen Arbeiten auf diesem Gebiet demnächst in der Schweiz fortsetzen wird.

Vielleicht wird man den „natürlichen“ Gentransfer durch gezähmte Viren schon in wenigen Jahren ersetzten können. Mit „Genkanonen“ könnte dann die hochgereinigte Erbsubstanz direkt in den Patienten geschossen werden – eine Methode, welche die gebürtige Texanerin Priscilla Furth bereits an lebenden Mäusen und Schafen erprobt hat. Eine Stahlfeder katapultierte dabei die Gene mit solcher Geschwindigkeit aus dem Lauf, daß sie mehrere Zentimeter tief in die Haut eindrangen, angeblich ohne bleibende Schäden zu hinterlassen.

Bei einem Internationalen Symposium zur Gentherapie, das kürzlich im Berliner Max-Delbrück-Centrum stattfand, zeigten sich die anwesenden Experten trotzdem eher skeptisch. Die Mehrheit, so schien es, würde die „sanften“ Retroviren einem Schuß mit der Genkanone vorziehen.

Literatur:

PNAS Vol. 89, pp 9870-9874; Bevec, D, Dobrovnik, M., Hauber, J., Böhnlein, E.: Inhibition of human immunodeficiency virus type 1 replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Rec trans-activator.

Aids Research and Human Retroviruses Vol. 8, pp 39-45; Harrison, G.S., Long, C.J., Maxwell, F., Glode, L.M., Maxwell, I.H.: Inhibition of HIV Production in Cells Containing an Integrated, HIV-Regulated Diphteria Toxin A Chain Gene.

(Originalversion von „Selbstmord als Programm“, Bild der Wissenschaft, Juni 1993)

 

Gentherapie gegen Mukoviszidose geplant

Ethische Bedenken? Robert Williamson kann die Gedankengänge des Fragestellers nicht nachvollziehen, fühlt sich scheinbar persönlich angegriffen. „Ich sehe absolut kein ethisches Problem darin, die Behandlungsmöglichkeiten für eine große Anzahl von Menschen zu verbessern, die an einer sehr schweren Erbkrankheit leiden.“ Der hemdsärmelige Molekularbiologe von der Londoner St. Mary’s Hospital Medical School wird spätestens Ende des Jahres eine Gentherapie gegen die Mukoviszidose- auch Cystische Fibrose oder kurz CF genannt – erproben.

Wieviel Not sich hinter den medizinischen Fachausdrücken verbirgt, machte Williamson kürzlich auf einem Gentherapie-Symposium am Max-Delbrück-Centrum in Berlin-Buch deutlich: „Allein in Deutschland gibt es rund 10.000 Patienten; deren mittlere Lebenserwartung beträgt 24 Jahre.“ Ursache ist eine krankhaft veränderte Schleimproduktion in Lunge, Bauchspeicheldrüse, Leber und anderen Organen. Die zähe Flüssigkeit führt dazu, daß die Betroffenen häufig um Luft ringen müssen. Außerdem behindert sie lebenswichtige Verdauungsenzyme auf ihrem Weg in den Magen, weshalb die Nahrung nicht ausreichend verwertet wird.

Durch eine besonders nährstoffreiche Diät sowie eine ausgeklügelte Bewegungs- und Atemtherapie konnten in den letzten Jahrzehnten beeindruckende Erfolge erzielt werden. Zudem mildern neue Antibiotika die vielfältigen Infektionen der Atemwege, unter denen die Patienten zeitlebens zu leiden haben. Als letzter Ausweg kommt für einige wenige eine Herz-Lungen-Transplantation in Betracht. Die Fortschritte sind zwar recht beachtlich – noch in den fünfziger Jahren starben fast alle CF-Patienten im Kindesalter -, können aber nicht darüber hinwegtäuschen, daß doch immer nur die Symptome behandelt werden. Nun wollen gleich fünf Arbeitsgruppen weltweit neben Williamsons Gruppe noch ein französisches und drei amerikanische Teams das Übel an der Wurzel packen.

Seit 1989 kennt man das Gen, das, wenn es lädiert ist, zu einer Mukoviszidose führt. Es enthält die Informationen zur Herstellung eines Eiweißes, das im Normalfall Natrium- und Chloridionen aus den Zellen heraustransportiert. Bei siebzig Prozent aller Betroffenen fehlt lediglich einer von 300.000 Bausteinen des CF-Gens. Der fehlerhafte Bauplan führt zur Bildung eines defekten Eiweißes. Natrium- und Cloridionen bleiben deshalb in den Zellen, die ihrer Umgebung zum Ausgleich Wasser entziehen – aus einer dünnflüssigen Schutzschicht entsteht der gefürchtete zähe Schleim.

Obwohl inzwischen dreihundert verschiedene Mutationen des CF-Gens bekannt sind, von denen zwölf gravierende Folgen haben, konnte Williamson seinen Zuhörern in Berlin-Buch auch eine gute Nachricht überbringen: „Ich denke, Sie könnten 15 kaputte CF-Gene in jeder Zelle ihres Körpers haben. So lange auch nur ein normales CF-Gen vorhanden ist, bleiben Sie gesund.“ Diese Eigenschaft verbessert die Erfolgsaussichten einer Gentherapie erheblich.

Das Ziel der Wissenschaftler ist daher nicht besonders hoch gesteckt: „Wenn nur jede zwanzigste Zelle in einer Schleimschicht normal funktioniert, würde das für einen normalen Ionentransport schon genügen.“ Dies ist eine Einsicht, die man aus Versuchen in Zellkulturen sowie an Ratten und Mäusen gewonnen hat. Mit Hilfe von „umgebauten“ Erkältungsviren ist es Ronald Crystal vom Nationalen Gesundheitsinstitut der USA in Maryland als erstem gelungen, das menschliche CF-Gen in die Lungenzellen seiner Versuchstiere einzuschmuggeln.

Crystal benutzte dazu eine Art Nasenspray, mit dem die Viren samt der heilsamen Fracht eingeatmet wurden. In den Atemwegen der Ratten konnte der Mediziner daraufhin das menschliche Eiweiß nachweisen. Auch wenn statt der Viren winzige Fettkügelchen (Liposomen) als Vehikel für den Gentransfer benutzt und per Aerosolspray in den Organismus übertragen werden, überleben die manipulierten Zellen bis zu hundert Tage. Die Erfolge im Labor genügen nach Ansicht von Williamson, um die Therapie bald an CF-Patienten zu erproben. Gegenwärtig müssen sie sich mehrmals täglich vom lebensbedrohlichen Schleim freiklopfen.

Die zuständigen klinischen Prüf- und Ethikkommissionen haben bereits die Weichen gestellt: Alle fünf Arbeitsgruppen erhielten grünes Licht, um jeweils eine kleine Zahl freiwilliger Patienten zu behandeln. Schon innerhalb der nächsten Monate sei mit dem ersten Eingriff zu rechnen, meint Williamson, der seine Erlaubnis vor zwei Wochen bekam. Er freut sich auf den unmittelbar bevorstehenden Schritt aus der Theorie in die Praxis. „Hoffentlich wird dann in wenigen Jahren eine neue Behandlung zur Verfügung stehen.“

(erschienen in der Süddeutschen Zeitung am 15. April 1993)